資訊

上海

課程咨詢: 400-810-2680

預(yù)約高中1對1精品課程(面授/在線),滿足學(xué)員個性化學(xué)習(xí)需求 馬上報名↓

獲取驗證碼

請選擇城市

  • 上海

請選擇意向校區(qū)

請選擇年級

請選擇科目

立即體驗
當(dāng)前位置:北京學(xué)而思1對1 > 初中教育 > 初二數(shù)學(xué) > 正文
內(nèi)容頁banner-1對1體驗

初中代數(shù)公式定理:二次函數(shù)

2010-06-13 13:54:38  來源:blog

  1 二次函數(shù)及其圖像


  1.1 二次函數(shù)


  我們把函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a不等于0)叫做二次函數(shù)


  1.2 函數(shù)y=ax2(a不等于0)的圖像和性質(zhì)


  用表里各組對應(yīng)值作為點的坐標(biāo),進(jìn)行描點,然后用光滑的曲線把它們順次聯(lián)結(jié)起來,就得到函數(shù)y=x2的圖象這個圖象叫做拋物線函數(shù)y=x2的圖像,以后簡稱為拋物線y=x2這條拋物線是關(guān)于y軸成對稱的我們把y軸叫做拋物線y=x2的對稱軸對稱軸和拋物線的焦點,叫做拋物線的頂點


  1.3 函數(shù)y=ax2+bx+c(a不等于0)的圖像和性質(zhì)


  拋物線y=ax2+bx+c的頂點坐標(biāo)是(-b/2a,4ac-b2/4a),對稱軸方程是x=-b/2a,當(dāng)a〉0時,拋物線的開口向上,并且向上無限延伸;當(dāng)a〈0時,拋物線的開口向下,并且向下無限延伸


  當(dāng)a〉0時,二次函數(shù)y=ax2+bx+c在x〈-b/2a時是遞減的,在x〉-b/2a時是遞增的;在x=-b/2a處取得y較小=4ac-b2/4a當(dāng)a〈0時,二次函數(shù)y=ax2+bx+c在x〈-b/2a時是遞減的;在x=-不/2a處取得y較大=4ac-b2/4a


  2 根據(jù)已知條件求二次函數(shù)


  2.1 根據(jù)已知條件確定二次函數(shù)


  2.2 二次函數(shù)的較大值或較小值


  2.3 一元二次方程的圖像解法

文章下長方圖-初中12本名著精華版資料包
立即領(lǐng)取中小學(xué)熱門學(xué)習(xí)資料
*我們在24小時內(nèi)與您取得電話聯(lián)系
側(cè)邊圖-1對5課程