預約高中1對1精品課程(面授/在線),滿足學員個性化學習需求 馬上報名↓
北京初二數(shù)學同步輔導!新學期開學,同學們距離升級診斷又近了一步。大家要盡快的進入學習狀態(tài),適應充實的校園生活。你準備好了嗎?愛智康師資團隊,這個學期陪你。下面為大家分享北京初二數(shù)學同步輔導!
北京初二數(shù)學同步輔導
初二數(shù)學公式歸納:頂點坐標公式
二次函數(shù)拋物線頂點式&頂點坐標
頂點式:y=a(x-h)^2+k (a≠0,k為常數(shù),x≠h)
頂點坐標公式頂點坐標:(-b/2a),(4ac-b^2)/4a)
二次函數(shù)y=ax2;,y=a(x-h)2;,y=a(x-h)2;+k,y=ax2;+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:
解析式
y=ax2
y=a(x-h)2
y=a(x-h)2+k
y=ax2+bx+c
頂點坐標
[0,0]
[h,0]
[h,k]
[-b/2a,(4ac-b2)/4a ]
對 稱 軸
x=0
x=h
x=h
x=-b/2a
當h>0時,y=a(x-h)2的圖象可由拋物線y=ax2;向右平行移動h個單位得到,
當h<0時,則向左平行移動|h|個單位得到.
當h>0,k>0時,將拋物線y=ax2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)2+k的圖象;
當h>0,k<0時,將拋物線y=ax2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)2+k的圖象;
當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)2+k的圖象;
當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)2+k的圖象;
因此,研究拋物線y=ax2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.
2.拋物線y=ax2+bx+c(a≠0)的圖象:當a>0時,開口向上"當a<0時,開口向下,對稱軸是直線x=-b/2a,頂點坐標是[ -b/2a,(4ac-b2)/4a]
3.拋物線y=ax2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小. 4.拋物線y=ax2+bx+c的圖象與坐標軸的交點:
(1)圖象與y軸一定相交,交點坐標為(0,c);
(2)當△=b2-4ac>0,圖象與x軸交于兩點A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax2+bx+c=0
(a≠0)的兩根.這兩點間的距離AB=|x2-x1|=.
當△=0.圖象與x軸只有一個交點;
當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y<0.
5.拋物線y=ax2+bx+c的較值:如果a>0(a<0),則當x=時,y較小(大)值=.
頂點的橫坐標,是取得較值時的自變量值,頂點的縱坐標,是較值的取值.
6.用待定系數(shù)法求二次函數(shù)的解析式
(1)當題給條件為已知圖象經(jīng)過三個已知點或已知x、y的三對對應值時,可設(shè)解析式為一般形式:
y=ax2+bx+c(a≠0).
(2)當題給條件為已知圖象的頂點坐標或?qū)ΨQ軸時,可設(shè)解析式為頂點式:y=a(x-h)2+k(a≠0).
(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設(shè)解析式為兩根式:y=a(x-x?)(x-x2)(a≠0).
7.二次函數(shù)知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點功課,往往以大題形式出現(xiàn).
北京初二數(shù)學同步輔導!為大家介紹好了,如果大家還有什么問題的話,請直接撥打免費咨詢電話:4000-121-121!有專業(yè)的老師為您解答!
大家都在看