預(yù)約高中1對1精品課程(面授/在線),滿足學員個性化學習需求 馬上報名↓
2019北京高三二模診斷數(shù)學知識點復(fù)習!馬上就是二模診斷了,大家好好準備吧!數(shù)學的知識點不多,但是也有很多容易混的,大家多多訓練呀,當然還是要多做題的,下面看看小編為大家準備較新的2019北京高三二模診斷數(shù)學知識點復(fù)習內(nèi)容,希望對大家的進步有所幫助。
想要了解2019年北京高考二模診斷試題的相關(guān)資料,請點擊加入【愛智康高中交流福利群】 ,并直接向管理員“小康康”索。壑强蹈咧薪涣鞲@簳欢ㄆ诿赓M發(fā)放學習資料,高中以及高考政策等相關(guān)消息,請持題目,續(xù)關(guān)注!
2019北京高三二模診斷數(shù)學知識點復(fù)習(一)
1.集合中元素的特征認識不明。
元素具有確定性,無序性,互異性三種性質(zhì)。
2.遺忘空集。
A含于B時求集合A,容易遺漏A可以為空集的情況。比如A為(x-1)的平方>0,x=1時A為空集,也屬于B.求子集或真子集個數(shù)時容易漏掉空集。
3.忽視集合中元素的互異性。
4.充分必要條件顛倒致誤。
必要不充分和充分不必要的區(qū)別——:比如p可以推出q,而q推不出p,就是充分不必要條件,p不可以推出q,而q卻可以推出p,就是必要不充分。
5.對含有量詞的命題否定不當。
含有量詞的命題的否定,先否定量詞,再否定結(jié)論。
6.求函數(shù)定義域忽視細節(jié)致誤。
根號內(nèi)的值必須不能等于0,對數(shù)的真數(shù)大于等于零,等等。
7.函數(shù)單調(diào)性的判斷錯誤。
這個就得注意函數(shù)的符號,比如f(-x)的單調(diào)性與原函數(shù)相反。
8.函數(shù)奇偶性判定中常見的兩種錯誤。
判定主要注意
1,定義域必須關(guān)于原點對稱,
2,注意奇偶函數(shù)的判斷定理,化簡要小心負號。
9.求解函數(shù)值域時忽視自變量的取值范圍。
10.抽象函數(shù)中推理不嚴謹致誤。
11.不能實現(xiàn)二次函數(shù),一元二次方程和一元二次不等式的相互轉(zhuǎn)換。
二次函數(shù)令y為0→方程→看題目要求是什么→要么方程大于小于0,要么刁塔(那個小三角形)b的平方-4ac大于等于小于0種種。
12.比較大小時,對指數(shù)函數(shù),對數(shù)函數(shù),和冪函數(shù)的性質(zhì)記憶模糊導致失誤。
13.忽略對數(shù)函數(shù)單調(diào)性的限制條件導致失誤。
14.函數(shù)零點定理使用不當致誤。
f(a)xf(b)<0,則區(qū)間ab上存在零點。
15.忽略冪函數(shù)的定義域而致錯。
x的二分之一次方定義域為0到正無窮。
16.錯誤理解導數(shù)的定義致誤。
17.導數(shù)與極值關(guān)系不清致誤。
f‘派x為0解出的根不一定是極值這個要注意。
18.導數(shù)與單調(diào)性關(guān)系不清致誤。
19.誤把定點作為切點致誤。
20.定積分忽視細節(jié)致誤。
21.定積分幾何意義不明致誤。
22.忽視角的范圍。
23.圖像變換方向把握不準。
24.忽視正。余弦函數(shù)的有界性。
25.解三角形時出現(xiàn)漏解或增解。
26.向量加減法的幾何意義不明致誤。
27.忽視平面向量基本定理的使用條件致誤。
28.向量的模與數(shù)量積的關(guān)系不清致誤。
29.判別不清向量的夾角。
30.忽略an=sn—sn—1的成立條件。
2019北京高三二模診斷數(shù)學知識點復(fù)習(二)
31.等比數(shù)列求和時,忽略對q是否為1的討論。
32.數(shù)列項數(shù)不清導致錯誤。
33.考慮問題不全面而導致失誤。
34.用錯位相減法求和時處理不當。
35.忽視變形轉(zhuǎn)化的等價性。
36.忽視基本不等式應(yīng)用條件。
37.不等式解集的表述形式錯誤。
38.恒成立問題錯誤。
39.目標函數(shù)理解錯誤。
40.由三視圖還原空間幾何體不準確致誤。
41.空間點,線,面位置關(guān)系不清致誤。
42.證明過程不嚴謹致誤。
43.忽視了數(shù)量積和向量夾角的關(guān)系而致誤。
44.忽視異面直線所成角的范圍而致錯。
45.用向量法求線面角時理解有誤而致錯。
46.弄錯向量夾角與二面角的關(guān)系致誤。
47.解折疊問題時沒有理順折疊前后圖形中的不變量和改變量致誤。
48.忽視斜率不存在的情況。
49.忽視圓存在的條件。
50.忽視零截距致誤。
51.弦長公式使用不合理導致解題錯誤。
52.焦點位置不確定導致漏解。
53.忽視限制條件求錯軌跡方程。
54.解決直線與圓錐曲線的相交問題時忽視大于零的情況。
55.兩個原理不清而致錯。
56.排列組合問題錯位或出現(xiàn)重復(fù),遺漏致誤。
57.忽視特殊數(shù)字或特殊位置而致錯。
58.混淆均勻分組與不均勻分組致錯。
59.不相鄰問題方法不當而致錯。
60.混淆二項式系數(shù)與項的系數(shù)而致誤。
2019北京高三二模診斷數(shù)學知識點復(fù)習(三)
易錯點1 遺忘空集致誤
錯因分析:由于空集是任何非空集合的真子集,因此,對于集合B高三經(jīng)典糾錯筆記:數(shù)學A,就有B=A,φ≠B高三經(jīng)典糾錯筆記:數(shù)學A,B≠φ,三種情況,在解題中如果思維不夠縝密就有可能忽視了 B≠φ這種情況,導致解題結(jié)果錯誤。尤其是在解含有參數(shù)的集合問題時,更要充分注意當參數(shù)在某個范圍內(nèi)取值時所給的集合可能是空集這種情況?占且粋特殊的集合,由于思維定式的原因,考生往往會在解題中遺忘了這個集合,導致解題錯誤或是解題不全面。
易錯點2 忽視集合元素的三性致誤
錯因分析:集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響較大,特別是帶有字母參數(shù)的集合,實際上就隱含著對字母參數(shù)的一些要求。在解題時也可以先確定字母參數(shù)的范圍后,再具體解決問題。
易錯點3 四種命題的結(jié)構(gòu)不明致誤
錯因分析:如果原命題是“若 A則B”,則這個命題的逆命題是“若B則A”,否命題是“若┐A則┐B”,逆否命題是“若┐B則┐A”。這里面有兩組等價的命題,即“原命題和它的逆否命題等價,否命題與逆命題等價”。在解答由一個命題寫出該命題的其他形式的命題時,一定要明確四種命題的結(jié)構(gòu)以及它們之間的等價關(guān)系。另外,在否定一個命題時,要注意全稱命題的否定是特稱命題,特稱命題的否定是全稱命題。如對“a,b都是偶數(shù)”的否定應(yīng)該是“a,b不都是偶數(shù)”,而不應(yīng)該是“a ,b都是奇數(shù)”。
易錯點4 充分必要條件顛倒致誤
錯因分析:對于兩個條件A,B,如果A=>B成立,則A是B的充分條件,B是A的必要條件;如果B=>A成立,則A是B的必要條件,B是A的充分條件;如果A<=>B,則A,B互為充分必要條件。解題時較容易出錯的就是顛倒了充分性與必要性,所以在解決這類問題時一定要根據(jù)充要條件的概念作出準確的判斷。
易錯點5 邏輯聯(lián)結(jié)詞理解不準致誤
錯因分析:在判斷含邏輯聯(lián)結(jié)詞的命題時很容易因為理解不準確而出現(xiàn)錯誤,在這里我們給出一些常用的判斷方法,希望對大家有所幫助:p∨q真<=>p真或q真,命題p∨q假<=>p假且q假(概括為一真即真);命題p∧q真<=>p真且q真,p∧q假<=>p假或q假(概括為一假即假);┐p真<=>p假,┐p假<=>p真(概括為一真一假)。
函數(shù)與導數(shù)
易錯點6 求函數(shù)定義域忽視細節(jié)致誤
錯因分析:函數(shù)的定義域是使函數(shù)有意義的自變量的取值范圍,因此要求定義域就要根據(jù)函數(shù)解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數(shù)的定義域。在求一般函數(shù)定義域時要注意下面幾點:(1)分母不為0;(2)偶次被開放式非負;(3)真數(shù)大于0;(4)0的0次冪沒有意義。函數(shù)的定義域是非空的數(shù)集,在解決函數(shù)定義域時不要忘記了這點。對于復(fù)合函數(shù),要注意外層函數(shù)的定義域是由內(nèi)層函數(shù)的值域決定的。
易錯點7 帶有少有值的函數(shù)單調(diào)性判斷錯誤
錯因分析:帶有少有值的函數(shù)實質(zhì)上就是分段函數(shù),對于分段函數(shù)的單調(diào)性,有兩種基本的判斷方法:一是在各個段上根據(jù)函數(shù)的解析式所表示的函數(shù)的單調(diào)性求出單調(diào)區(qū)間,較后對各個段上的單調(diào)區(qū)間進行整合;二是畫出這個分段函數(shù)的圖象,結(jié)合函數(shù)圖象、性質(zhì)進行直觀的判斷。研究函數(shù)問題離不開函數(shù)圖象,函數(shù)圖象反應(yīng)了函數(shù)的所有性質(zhì),在研究函數(shù)問題時要時時刻刻想到函數(shù)的圖象,學會從函數(shù)圖象上去分析問題,尋找解決問題的方案。對于函數(shù)的幾個不同的單調(diào)遞增(減)區(qū)間,千萬記住不要使用并集,只要指明這幾個區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。
易錯點8 求函數(shù)奇偶性的常見錯誤
錯因分析:求函數(shù)奇偶性的常見錯誤有求錯函數(shù)定義域或是忽視函數(shù)定義域,對函數(shù)具有奇偶性的前提條件不清,對分段函數(shù)奇偶性判斷方法不當?shù)取E袛嗪瘮?shù)的奇偶性,首先要考慮函數(shù)的定義域,一個函數(shù)具備奇偶性的必要條件是這個函數(shù)的定義域區(qū)間關(guān)于原點對稱,如果不具備這個條件,函數(shù)一定是非奇非偶的函數(shù)。在定義域區(qū)間關(guān)于原點對稱的前提下,再根據(jù)奇偶函數(shù)的定義進行判斷,在用定義進行判斷時要注意自變量在定義域區(qū)間內(nèi)的任意性。
相關(guān)推薦:2019北京高三二模診斷數(shù)學知識點復(fù)習
2019年北京市東西海朝4區(qū)高考二模各科試題評析匯總
2019年北京市東西海朝4區(qū)高三二模試題及答案解析匯總
以上是小編對2019北京高三二模診斷數(shù)學知識點復(fù)習的詳細介紹,只有把試題上涉及的知識點及書本上相應(yīng)重難知識點吃透,通過試題演練才能牢固掌握,保證診斷時下筆如有神助。有關(guān)北京高考二?记拜o導及考后規(guī)劃的課程,請直接撥打免費咨詢電話:!學習靠的是日積月累,絕不可以眼高手低。堅持才能取得較后的勝利!加油!