預約課程還可獲贈免費的學習復習診斷
排列P------和順序有關
組合C-------不牽涉到順序的問題
排列分順序,組合不分
例如把5本不同的書分給3個人,有幾種分法."排列"
把5本書分給3個人,有幾種分法"組合"
1.排列及公式
從n個不同元素中,任取m(m≤n)個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列;從n個不同元素中取出m(m≤n)個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數,用符號p(n,m)表示.
p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(規(guī)定0!=1).
2.組合及公式
從n個不同元素中,任取m(m≤n)個元素并成一組,叫做從n個不同元素中取出m個元素的一個組合;從n個不同元素中取出m(m≤n)個元素的所有組合的個數,叫做從n個不同元素中取出m個元素的組合數.用符號
c(n,m)表示.
c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);
3.其他排列與組合公式
從n個元素中取出r個元素的循環(huán)排列數=p(n,r)/r=n!/r(n-r)!.
n個元素被分成k類,每類的個數分別是n1,n2,...nk這n個元素的全排列數為
n!/(n1!*n2!*...*nk!).
k類元素,每類的個數無限,從中取出m個元素的組合數為c(m+k-1,m).
排列(Pnm(n為下標,m為上標))
Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是階乘符號);Pnn(兩個n分別為上標和下標)=n!;0!=1;Pn1(n為下標1為上標)=n
組合(Cnm(n為下標,m為上標))
Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(兩個n分別為上標和下標)=1;Cn1(n為下標1為上標)=n;Cnm=Cnn-m
2008-07-0813:30
公式P是指排列,從N個元素取R個進行排列。公式C是指組合,從N個元素取R個,不進行排列。N-元素的總個數R參與選擇的元素個數!-階乘,如9!=9*8*7*6*5*4*3*2*1
從N倒數r個,表達式應該為n*(n-1)*(n-2)..(n-r+1);
因為從n到(n-r+1)個數為n-(n-r+1)=r
舉例:
Q1:有從1到9共計9個號碼球,請問,可以組成多少個三位數?
A1:123和213是兩個不同的排列數。即對排列順序有要求的,既屬于“排列P”范疇。
上問題中,任何一個號碼只能用一次,顯然不會出現988,997之類的組合,我們可以這么看,百位數有9種可能,十位數則應該有9-1種可能,個位數則應該只有9-1-1種可能,較終共有9*8*7個三位數。公式=P(3,9)=9*8*7,(從9倒數3個的乘積)
Q2:有從1到9共計9個號碼球,請問,如果三個一組,代表“三國聯(lián)盟”,可以組合成多少個“三國聯(lián)盟”?
A2:213組合和312組合,代表同一個組合,只要有三個號碼球在一起即可。即不要求順序的,屬于“組合C”范疇。
上問題中,將所有的包括排列數的個數去除掉屬于重復的個數即為較終組合數C(3,9)=9*8*7/3*2*1
預約課程還可獲贈免費的學習規(guī)劃診斷