溫馨提示:
1.請檢查你輸入的網(wǎng)址是否正確。
2.如果您不能確認訪問的網(wǎng)址,請瀏覽愛智康網(wǎng)站地圖查看更多網(wǎng)址。
3.您也可以返回首頁。
2.學習假設思想解決雞兔同籠問題
雞兔同籠問題源于我國1500年前左右的偉大數(shù)學著作《孫子算經(jīng)》,其中記載的31題,“今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?”翻譯成現(xiàn)代文就是說有若干只雞兔同在一個籠子里,從上面數(shù),有35個頭;從下面數(shù),有94只腳。求籠中各有幾只雞和兔?
問題解析:我們知道每只雞2只腳,每只兔子4只腳,我們不妨假設籠子里面只有雞,那么應該有只腳,而事實上有94只腳,原因就是我們把一部分兔子假設成了雞。
我們知道,每只兔子比雞多2只腳,那么一共應該有只兔子,剩下了35–12=23只雞。
對于一般的雞兔同籠問題,我們有
雞數(shù)=(兔的腳數(shù)總頭數(shù)–總腳數(shù))(兔的腳數(shù)-雞的腳數(shù))
兔數(shù)=(總腳數(shù)-雞的腳數(shù)總頭數(shù))(兔的腳數(shù)-雞的腳數(shù))
3.平均數(shù)應用題
“平均數(shù)”這個數(shù)學概念在同學們的日常學習和生活中經(jīng)常用到。例如,三年級上學期期末考完試,可以全班同學的數(shù)學“平均成績”,同學與爸爸媽媽三個人的“平均年齡”等等,都是我們經(jīng)常碰到的求平均數(shù)的問題。根據(jù)我們所舉的例子,可以總結出求平均數(shù)的一般公式:總數(shù)和÷人數(shù)(或個數(shù))=平均數(shù)。比如說人大附小三年級(一)班第2小組5名同學上學期期末數(shù)學成績分別是93,95,98,97,90,那么第2小組5名同學的數(shù)學平均分是多少呢?
問題解析:根據(jù)我們總結的公式,首先可以求出第2小組5名同學數(shù)學的總分一共是93+95+98+97+92=475,所以他們的平均分是475÷5=95(分)。
4.和差倍應用題
和差倍問題是由和差問題、和倍問題、差倍問題三類問題組成的。和倍問題是已知大小兩個數(shù)的和與它們的倍數(shù)關系,求大小兩個數(shù)的應用題,一般可應用公式:數(shù)量和÷對應的倍數(shù)和=“1”倍量;差倍問題就是已知大小兩個數(shù)的差和它們的倍數(shù)關系,求大小兩個數(shù)的應用題,一般可應用公式:數(shù)量差÷對應的倍數(shù)差=“1”倍量;和差問題是已知大小兩個數(shù)的和與兩個數(shù)的差,求大小兩個數(shù)的應用題一般可應用公式:大數(shù)=(數(shù)量和+數(shù)量差)÷2,小數(shù)=(數(shù)量和-數(shù)量差)÷2.為了幫助我們理解題意,弄清題目中兩種量彼此間的關系,常采用畫線段圖的方法以線段的相對長度來表示兩種量間的關系,以便于找到解題的途徑。
5.年齡問題
基本的年齡問題可以說是和差倍問題生活化的典型應用。同時,年齡問題也有其鮮明的特點:任何兩個人之間的年齡差保持不變。解決年齡問題,關鍵就是要抓住以上兩點。例如:哥哥兩年后的年齡是弟弟年齡的2倍,今年哥哥比弟弟大5歲,那么今年弟弟多少歲?
問題解析:由于兩人之間的年齡差不變,在2年之后哥哥仍然比弟弟大5歲,那時哥哥是弟弟年齡的2倍,這就變成了一道差倍問題,也就是說弟弟的年齡在2年后是5÷(2-1)=5(歲),所以今年弟弟5-2=3(歲)。