資訊

上海

課程咨詢: 10108899

在線咨詢

點(diǎn)擊開始 在線咨詢

電話咨詢

請(qǐng)撥打咨詢電話 1010-8899
TOP
當(dāng)前位置:上海學(xué)而思1對(duì)1 > 高中輔導(dǎo) > 學(xué)習(xí)方法 > 正文

高中數(shù)學(xué)解題基本方法

2010-01-28 16:30:13  來(lái)源:網(wǎng)絡(luò)資源 文章作者:匿名

點(diǎn)擊即可領(lǐng)取最新500+份上海高中試題/知識(shí)點(diǎn)資料包

點(diǎn)擊領(lǐng)取

— — 學(xué)而思高中課程在線預(yù)約 — —

預(yù)約課程還可獲贈(zèng)免費(fèi)的學(xué)習(xí)復(fù)習(xí)診斷

免費(fèi)學(xué)習(xí)診斷 精品5人班 個(gè)性化團(tuán)課

    點(diǎn)擊預(yù)約→免費(fèi)的1對(duì)1學(xué)科診斷及課程規(guī)劃

一、配方法

  配方法是對(duì)數(shù)學(xué)式子進(jìn)行一種定向變形(配成“完全平方”)的技巧,通過(guò)配方找到已知和未知的聯(lián)系,從而化繁為簡(jiǎn)。何時(shí)配方,需要我們適當(dāng)預(yù)測(cè),并且合理運(yùn)用“裂項(xiàng)”與“添項(xiàng)”、“配”與“湊”的技巧,從而完成配方。有時(shí)也將其稱為“湊配法”。

  較常見的配方是進(jìn)行恒等變形,使數(shù)學(xué)式子出現(xiàn)完全平方。它主要適用于:已知或者未知中含有二次方程、二次不等式、二次函數(shù)、二次代數(shù)式的討論與求解,或者缺xy項(xiàng)的二次曲線的平移變換等問(wèn)題。

  二、換元法

  解數(shù)學(xué)題時(shí),把某個(gè)式子看成一個(gè)整體,用一個(gè)變量去代替它,從而使問(wèn)題得到簡(jiǎn)化,這叫換元法。換元的實(shí)質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對(duì)象,將問(wèn)題移至新對(duì)象的知識(shí)背景中去研究,從而使非標(biāo)準(zhǔn)型問(wèn)題標(biāo)準(zhǔn)化、復(fù)雜問(wèn)題簡(jiǎn)單化,變得容易處理。

  換元法又稱輔助元素法、變量代換法。通過(guò)引進(jìn)新的變量,可以把分散的條件聯(lián)系起來(lái),隱含的條件顯露出來(lái),或者把條件與結(jié)論聯(lián)系起來(lái);蛘咦?yōu)槭煜さ男问,把?fù)雜的和推證簡(jiǎn)化。

  它可以化高次為低次、化分式為整式、化無(wú)理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問(wèn)題中有廣泛的應(yīng)用。

  三、待定系數(shù)法

  要確定變量間的函數(shù)關(guān)系,設(shè)出某些未知系數(shù),然后根據(jù)所給條件來(lái)確定這些未知系數(shù)的方法叫待定系數(shù)法,其理論依據(jù)是多項(xiàng)式恒等,也就是利用了多項(xiàng)式f(x) g(x)的充要條件是:對(duì)于一個(gè)任意的a值,都有f(a) g(a);或者兩個(gè)多項(xiàng)式各同類項(xiàng)的系數(shù)對(duì)應(yīng)相等。

  待定系數(shù)法解題的關(guān)鍵是依據(jù)已知,正確列出等式或方程。使用待定系數(shù)法,就是把具有某種確定形式的數(shù)學(xué)問(wèn)題,通過(guò)引入一些待定的系數(shù),轉(zhuǎn)化為方程組來(lái)解決,要判斷一個(gè)問(wèn)題是否用待定系數(shù)法求解,主要是看所求解的數(shù)學(xué)問(wèn)題是否具有某種確定的數(shù)學(xué)表達(dá)式,如果具有,就可以用待定系數(shù)法求解。例如分解因式、拆分分式、數(shù)列求和、求函數(shù)式、求復(fù)數(shù)、解析幾何中求曲線方程等,這些問(wèn)題都具有確定的數(shù)學(xué)表達(dá)形式,所以都可以用待定系數(shù)法求解。

  使用待定系數(shù)法,它解題的基本步驟是:

  先進(jìn)步,確定所求問(wèn)題含有待定系數(shù)的解析式;

  第二步,根據(jù)恒等的條件,列出一組含待定系數(shù)的方程;

  第三步,解方程組或者消去待定系數(shù),從而使問(wèn)題得到解決。

  如何列出一組含待定系數(shù)的方程,主要從以下幾方面著手分析:

 、倮脤(duì)應(yīng)系數(shù)相等列方程;

 、谟珊愕鹊母拍钣脭(shù)值代入法列方程;

 、劾枚x本身的屬性列方程;

 、芾脦缀螚l件列方程。

  比如在求圓錐曲線的方程時(shí),我們可以用待定系數(shù)法求方程:首先設(shè)所求方程的形式,其中含有待定的系數(shù);再把幾何條件轉(zhuǎn)化為含所求方程未知系數(shù)的方程或方程組;較后解所得的方程或方程組求出未知的系數(shù),并把求出的系數(shù)代入已經(jīng)明確的方程形式,得到所求圓錐曲線的方程。

  四、定義法

  所謂定義法,就是直接用數(shù)學(xué)定義解題。數(shù)學(xué)中的定理、公式、性質(zhì)和法則等,都是由定義和公理推演出來(lái)。定義是揭示概念內(nèi)涵的邏輯方法,它通過(guò)指出概念所反映的事物的本質(zhì)屬性來(lái)明確概念。

  定義是千百次實(shí)踐后的必然結(jié)果,它科學(xué)地反映和揭示了客觀世界的事物的本質(zhì)特點(diǎn)。簡(jiǎn)單地說(shuō),定義是基本概念對(duì)數(shù)學(xué)實(shí)體的高度抽象。用定義法解題,是較直接的方法,本講讓我們回到定義中去。

  五、數(shù)學(xué)歸納法

  歸納是一種有特殊事例導(dǎo)出一般原理的思維方法。歸納推理分完全歸納推理與不完全歸納推理兩種。不完全歸納推理只根據(jù)一類事物中的部分對(duì)象具有的共同性質(zhì),推斷該類事物全體都具有的性質(zhì),這種推理方法,在數(shù)學(xué)推理論證中是不允許的。完全歸納推理是在考察了一類事物的全部對(duì)象后歸納得出結(jié)論來(lái)。

  數(shù)學(xué)歸納法是用來(lái)證明某些與自然數(shù)有關(guān)的數(shù)學(xué)命題的一種推理方法,在解數(shù)學(xué)題中有著廣泛的應(yīng)用。它是一個(gè)遞推的數(shù)學(xué)論證方法,論證的先進(jìn)步是證明命題在n=1(或n )時(shí)成立,這是遞推的基礎(chǔ);第二步是假設(shè)在n=k時(shí)命題成立,再證明n=k+1時(shí)命題也成立,這是無(wú)限遞推下去的理論依據(jù),它判斷命題的正確性能否由特殊推廣到一般,實(shí)際上它使命題的正確性突破了有限,達(dá)到無(wú)限。這兩個(gè)步驟密切相關(guān),缺一不可,完成了這兩步,就可以斷定“對(duì)任何自然數(shù)(或n≥n 且n∈N)結(jié)論都正確”。由這兩步可以看出,數(shù)學(xué)歸納法是由遞推實(shí)現(xiàn)歸納的,屬于完全歸納。

  運(yùn)用數(shù)學(xué)歸納法證明問(wèn)題時(shí),關(guān)鍵是n=k+1時(shí)命題成立的推證,此步證明要具有目標(biāo)意識(shí),注意與較終要達(dá)到的解題目標(biāo)進(jìn)行分析比較,以此確定和調(diào)控解題的方向,使差異逐步減小,較終實(shí)現(xiàn)目標(biāo)完成解題。

  運(yùn)用數(shù)學(xué)歸納法,可以證明下列問(wèn)題:與自然數(shù)n有關(guān)的恒等式、代數(shù)不等式、三角不等式、數(shù)列問(wèn)題、幾何問(wèn)題、整除性問(wèn)題等等。

  六、參數(shù)法

  參數(shù)法是指在解題過(guò)程中,通過(guò)適當(dāng)引入一些與題目研究的數(shù)學(xué)對(duì)象發(fā)生聯(lián)系的新變量(參數(shù)),以此作為媒介,再進(jìn)行分析和綜合,從而解決問(wèn)題。直線與二次曲線的參數(shù)方程都是用參數(shù)法解題的例證。換元法也是引入?yún)?shù)的典型例子。

  辨證唯物論肯定了事物之間的聯(lián)系是無(wú)窮的,聯(lián)系的方式是豐富多采的,科學(xué)的任務(wù)就是要揭示事物之間的內(nèi)在聯(lián)系,從而發(fā)現(xiàn)事物的變化規(guī)律。參數(shù)的作用就是刻畫事物的變化狀態(tài),揭示變化因素之間的內(nèi)在聯(lián)系。參數(shù)體現(xiàn)了近代數(shù)學(xué)中運(yùn)動(dòng)與變化的思想,其觀點(diǎn)已經(jīng)滲透到中學(xué)數(shù)學(xué)的各個(gè)分支。運(yùn)用參數(shù)法解題已經(jīng)比較普遍。

  參數(shù)法解題的關(guān)鍵是恰到好處地引進(jìn)參數(shù),溝通已知和未知之間的內(nèi)在聯(lián)系,利用參數(shù)提供的信息,順利地解答問(wèn)題。

  七、反證法

  與前面所講的方法不同,反證法是屬于“間接證明法”一類,是從反面的角度思考問(wèn)題的證明方法,即:肯定題設(shè)而否定結(jié)論,從而導(dǎo)出矛盾推理而得。法國(guó)數(shù)學(xué)家阿達(dá)瑪(Hadamard)對(duì)反證法的實(shí)質(zhì)作過(guò)概括:“若肯定定理的假設(shè)而否定其結(jié)論,就會(huì)導(dǎo)致矛盾”。具體地講,反證法就是從否定命題的結(jié)論入手,并把對(duì)命題結(jié)論的否定作為推理的已知條件,進(jìn)行正確的邏輯推理,使之得到與已知條件、已知公理、定理、法則或者已經(jīng)證明為正確的命題等相矛,矛盾的原因是假設(shè)不成立,所以肯定了命題的結(jié)論,從而使命題獲得了證明。

  反證法所依據(jù)的是邏輯思維規(guī)律中的“矛盾律”和“排中律”。在同一思維過(guò)程中,兩個(gè)互相矛盾的判斷不能同時(shí)都為真,至少有一個(gè)是假的,這就是邏輯思維中的“矛盾律”;兩個(gè)互相矛盾的判斷不能同時(shí)都假,簡(jiǎn)單地說(shuō)“A或者非A”,這就是邏輯思維中的“排中律”。反證法在其證明過(guò)程中,得到矛盾的判斷,根據(jù)“矛盾律”,這些矛盾的判斷不能同時(shí)為真,必有一假,而已知條件、已知公理、定理、法則或者已經(jīng)證明為正確的命題都是真的,所以“否定的結(jié)論”必為假。再根據(jù)“排中律”,結(jié)論與“否定的結(jié)論”這一對(duì)立的互相否定的判斷不能同時(shí)為假,必有一真,于是我們得到原結(jié)論必為真。所以反證法是以邏輯思維的基本規(guī)律和理論為依據(jù)的,反證法是可信的。

  反證法的證題模式可以簡(jiǎn)要的概括我為“否定→推理→否定”。即從否定結(jié)論開始,經(jīng)過(guò)正確無(wú)誤的推理導(dǎo)致邏輯矛盾,達(dá)到新的否定,可以認(rèn)為反證法的基本思想就是“否定之否定”。應(yīng)用反證法證明的主要三步是:否定結(jié)論 → 推導(dǎo)出矛盾 → 結(jié)論成立。實(shí)施的具體步驟是:

  先進(jìn)步,反設(shè):作出與求證結(jié)論相反的假設(shè);

  第二步,歸謬:將反設(shè)作為條件,并由此通過(guò)一系列的正確推理導(dǎo)出矛盾;

  第三步,結(jié)論:說(shuō)明反設(shè)不成立,從而肯定原命題成立。

  在應(yīng)用反證法證題時(shí),一定要用到“反設(shè)”進(jìn)行推理,否則就不是反證法。用反證法證題時(shí),如果欲證明的命題的方面情況只有一種,那么只要將這種情況駁倒了就可以,這種反證法又叫“歸謬法”;如果結(jié)論的方面情況有多種,那么必須將所有的反面情況一一駁倒,才能推斷原結(jié)論成立,這種證法又叫“窮舉法”。

  在數(shù)學(xué)解題中經(jīng)常使用反證法,牛頓曾經(jīng)說(shuō)過(guò):“反證法是數(shù)學(xué)家較精當(dāng)?shù)奈淦髦?rdquo;。一般來(lái)講,反證法常用來(lái)證明的題型有:命題的結(jié)論以“否定形式”、“至少”或“至多”、“”、“無(wú)限”形式出現(xiàn)的命題;或者否定結(jié)論更明顯。具體、簡(jiǎn)單的命題;或者直接證明難以下手的命題,改變其思維方向,從結(jié)論入手進(jìn)行反面思考,問(wèn)題可能解決得十分干脆。

    點(diǎn)擊預(yù)約→高考沖刺課,決勝高考

點(diǎn)擊領(lǐng)取上海歷年高中合格考、等級(jí)考學(xué)習(xí)資料包

預(yù)約課程還可獲贈(zèng)免費(fèi)的學(xué)習(xí)復(fù)習(xí)診斷

點(diǎn)擊領(lǐng)取
加入QQ群,與更多家長(zhǎng)交流經(jīng)驗(yàn)。!
  • 上海小學(xué)交流群:639215153
  • 上海小學(xué)家長(zhǎng)學(xué)習(xí)交流
  • 上海初中交流群:611612914
  • 上海中學(xué)家長(zhǎng)學(xué)習(xí)交流
  • 上海高中交流群:959031473
  • 高考家長(zhǎng)學(xué)習(xí)交流群
  • 上海幼升小交流群:772707735
  • 上海幼兒園升小學(xué)家長(zhǎng)學(xué)習(xí)交流群

    相關(guān)課程推薦

    小學(xué)1對(duì)1全科課

    定制元/次

    咨詢電話:400-810-2680

    點(diǎn)我預(yù)約

    初中1對(duì)1全科課

    定制元/次

    咨詢電話:400-810-2680

    點(diǎn)我預(yù)約

    高中1對(duì)1全科課

    定制元/次

    咨詢電話:400-810-2680

    點(diǎn)我預(yù)約
    意見反饋電話:400-810-2680  郵箱:advice@xueersi.com
    相關(guān)新聞

    學(xué)習(xí)資料免費(fèi)領(lǐng)更多 >

    高中各科文章
    小學(xué)各科知識(shí)
    高考資訊推薦