資訊

上海

課程咨詢: 400-810-2680

預(yù)約高中1對1精品課程(面授/在線),滿足學(xué)員個性化學(xué)習(xí)需求 馬上報名↓

獲取驗證碼

請選擇城市

  • 上海

請選擇意向校區(qū)

請選擇年級

請選擇科目

立即體驗
當(dāng)前位置:北京學(xué)而思1對1 > 小學(xué)教育 > 四五年級數(shù)學(xué) > 正文
內(nèi)容頁banner-一對一體驗

五年級小學(xué)數(shù)學(xué)知識:簡單的抽屜原理

2010-05-25 10:02:59  來源:本站原創(chuàng)

  把3個蘋果任意放到兩個抽屜里,可以有哪些放置的方法呢?一個抽屜放一個,另一個抽屜放兩個;或3個蘋果放在某一個抽屜里.盡管放蘋果的方式有所不同,但是總有一個共同的規(guī)律:至少有一個抽屜里有兩個或兩個以上的蘋果.如果把5個蘋果任意放到4個抽屜里,放置的方法更多了,但仍有這樣的結(jié)果.由此我們可以想到,只要蘋果的個數(shù)多于抽屜的個數(shù),就一定能助力至少有一個抽屜里有兩個或兩個以上的蘋果.道理很簡單:如果每個抽屜里的蘋果都不到兩個(也就是至多有1個),那么所有抽屜里的蘋果數(shù)的和就比總數(shù)少了.由此得到:


  抽屜原理:把多于n個的蘋果放進n個抽屜里,那么至少有一個抽屜里有兩個或兩個以上的蘋果。


  如果把蘋果換成了鴿子,把抽屜換成了籠子,同樣有類似的結(jié)論,所以有時也把抽屜原理叫做鴿籠原理.不要小看這個“原理”,利用它可以解決一些表面看來似乎很難的數(shù)學(xué)問題。


  比如,我們從街上隨便找來13人,就可以斷定他們中至少有兩個人屬相(指鼠、牛、虎、兔、…等十二種生肖)相同.怎樣證明這個結(jié)論是正確的呢?只要利用抽屜原理就很容易把道理講清楚.事實上,由于人數(shù)(13)比屬相數(shù)(12)多,因此至少有兩個人屬相相同(在這里,把13人看成13個“蘋果”,把12種屬相看成12個“抽屜”)。


  應(yīng)用抽屜原理要注意識別“抽屜”和“蘋果”,蘋果的數(shù)目一定要大于抽屜的個數(shù)。


  例1 有5個小朋友,每人都從裝有許多黑白圍棋子的布袋中任意摸出3枚棋子.請你證明,這5個人中至少有兩個小朋友摸出的棋子的顏色的配組是一樣的。


  分析與解答 首先要確定3枚棋子的顏色可以有多少種不同的情況,可以有:3黑,2黑1白,1黑2白,3白共4種配組情況,看作4個抽屜.把每人的3枚棋作為一組當(dāng)作一個蘋果,因此共有5個蘋果.把每人所拿3枚棋子按其顏色配組情況放入相應(yīng)的抽屜.由于有5個蘋果,比抽屜個數(shù)多,所以根據(jù)抽屜原理,至少有兩個蘋果在同一個抽屜里,也就是他們所拿棋子的顏色配組是一樣的。


  例2 一副撲克牌(去掉兩張),每人隨意摸兩張牌,至少有多少人才能助力他們當(dāng)中一定有兩人所摸兩張牌的花色情況是相同的?


  分析與解答 撲克牌中有方塊、梅花、黑桃、紅桃4種花色,2張牌的花色可以有:2張方塊,2張梅花,2張紅桃,2張黑桃,1張方塊1張梅花,1張方塊1張黑桃,1張方塊1張紅桃,1張梅花1張黑桃,1張梅花1張紅桃,1張黑桃1張紅桃共計10種情況.把這10種花色配組看作10個抽屜,只要蘋果的個數(shù)比抽屜的個數(shù)多1個就可以有題目所要的結(jié)果.所以至少有11個人。


  例3 證明:任取8個自然數(shù),必有兩個數(shù)的差是7的倍數(shù)。


  分析與解答 在與整除有關(guān)的問題中有這樣的性質(zhì),如果兩個整數(shù)a、b,它們除以自然數(shù)m的余數(shù)相同,那么它們的差a-b是m的倍數(shù).根據(jù)這個性質(zhì),本題只需證明這8個自然數(shù)中有2個自然數(shù),它們除以7的余數(shù)相同.我們可以把所有自然數(shù)按被7除所得的7種不同的余數(shù)0、1、2、3、4、5、6分成七類.也就是7個抽屜.任取8個自然數(shù),根據(jù)抽屜原理,必有兩個數(shù)在同一個抽屜中,也就是它們除以7的余數(shù)相同,因此這兩個數(shù)的差一定是7的倍數(shù)。


  把所有整數(shù)按照除以某個自然數(shù)m的余數(shù)分為m類,叫做m的剩余類或同余類,用[0],[1],[2],…,[m-1]表示.每一個類含有無窮多個數(shù),例如[1]中含有1,m+1,2m+1,3m+1,….在研究與整除有關(guān)的問題時,常用剩余類作為抽屜.根據(jù)抽屜原理,可以證明:任意n+1個自然數(shù)中,總有兩個自然數(shù)的差是n的倍數(shù)。


  在有些問題中,“抽屜”和“蘋果”不是很明顯的,需要精心制造“抽屜”和“蘋果”.如何制造“抽屜”和“蘋果”可能是很困難的,一方面需要認真地分析題目中的條件和問題,另一方面需要多做一些題積累經(jīng)驗。


  例4 從2、4、6、…、30這15個偶數(shù)中,任取9個數(shù),證明其中一定有兩個數(shù)之和是34。


  分析與解答 我們用題目中的15個偶數(shù)制造8個抽屜:

 


  

 
  凡是抽屜中有兩個數(shù)的,都具有一個共同的特點:這兩個數(shù)的和是34。


  現(xiàn)從題目中的15個偶數(shù)中任取9個數(shù),由抽屜原理(因為抽屜只有8個),必有兩個數(shù)在同一個抽屜中.由制造的抽屜的特點,這兩個數(shù)的和是34。


  例5 從1、2、3、4、…、19、20這20個自然數(shù)中,至少任選幾個數(shù),就可以助力其中一定包括兩個數(shù),它們的差是12。分析與解答在這20個自然數(shù)中,差是12的有以下8對:


  {20,8},{19,7},{18,6},{17,5},{16,4},{15,3},{14,2},{13,1}。


  另外還有4個不能配對的數(shù){9},{10},{11},{12},共制成12個抽屜(每個括號看成一個抽屜).只要有兩個數(shù)取自同一個抽屜,那么它們的差就等于12,根據(jù)抽屜原理至少任選13個數(shù),即可辦到(取12個數(shù):從12個抽屜中各取一個數(shù)(例如取1,2,3,…,12),那么這12個數(shù)中任意兩個數(shù)的差必不等于12)。


  例6 從1到20這20個數(shù)中,任取11個數(shù),必有兩個數(shù),其中一個數(shù)是另一個數(shù)的倍數(shù)。


  分析與解答 根據(jù)題目所要求證的問題,診斷慮按照同一抽屜中,任意兩數(shù)都具有倍數(shù)關(guān)系的原則制造抽屜.把這20個數(shù)按奇數(shù)及其倍數(shù)分成以下十組,看成10個抽屜(顯然,它們具有上述性質(zhì)):


  {1,2,4,8,16},{3,6,12},{5,10,20},{7,14},{9,18},{11},{13},{15},{17},{19}。


  從這10個數(shù)組的20個數(shù)中任取11個數(shù),根據(jù)抽屜原理,至少有兩個數(shù)取自同一個抽屜.由于凡在同一抽屜中的兩個數(shù)都具有倍數(shù)關(guān)系,所以這兩個數(shù)中,其中一個數(shù)一定是另一個數(shù)的倍數(shù)。


  例7 證明:在任取的5個自然數(shù)中,必有3個數(shù),它們的和是3的倍數(shù)。


  分析與解答 按照被3除所得的余數(shù),把全體自然數(shù)分成3個剩余類,即構(gòu)成3個抽屜.如果任選的5個自然數(shù)中,至少有3個數(shù)在同一個抽屜,那么這3個數(shù)除以3得到相同的余數(shù)r,所以它們的和一定是3的倍數(shù)(3r被3整除)。


  如果每個抽屜至多有2個選定的數(shù),那么5個數(shù)在3個抽屜中的分配必為1個,2個,2個,即3個抽屜中都有選定的數(shù).在每個抽屜中各取1個數(shù),那么這3個數(shù)除以3得到的余數(shù)分別為0、1、2.因此,它們的和也一定能被3整除(0+1+2被3整除)。


  例8 某校校慶,來了n位校友,彼此認識的握手問候.請你證明無論什么情況,在這n個校友中至少有兩人握手的次數(shù)一樣多。


  分析與解答 共有n位校友,每個人握手的次數(shù)較少是0次,即這個人與其他校友都沒有握過手;較多有n-1次,即這個人與每位到會校友都握了手.校友人數(shù)與握手次數(shù)的不同情況(0,1,2,…,n-1)數(shù)都是n,還無法用抽屜原理。


  然而,如果有一個校友握手的次數(shù)是0次,那么握手次數(shù)較多的不能多于n-2次;如果有一個校友握手的次數(shù)是n-1次,那么握手次數(shù)較少的不能少于1次.不管是前一種狀態(tài)0、1、2、…、n-2,還是后一種狀態(tài)1、2、3、…、n-1,握手次數(shù)都只有n-1種情況.把這n-1種情況看成n-1個抽屜,到會的n個校友每人按照其握手的次數(shù)歸入相應(yīng)的“抽屜”,根據(jù)抽屜原理,至少有兩個人屬于同一抽屜,則這兩個人握手的次數(shù)一樣多。

文章下長方圖-小學(xué)寫作范文精選
立即領(lǐng)取中小學(xué)熱門學(xué)習(xí)資料
*我們在24小時內(nèi)與您取得電話聯(lián)系
側(cè)邊圖-1對5課程