預(yù)約高中1對1精品課程(面授/在線),滿足學員個性化學習需求 馬上報名↓
很多同學剛剛進入高中,感覺數(shù)學十分難學,其實只要同學們多花一點時間和心思去攻克難點,高中數(shù)學就不會那么難學了。平時同學們也要注意多訓練、多總結(jié)。下面是愛智康小編整理的北京高一數(shù)學單調(diào)性練題目,希望可以幫助高一同學們。
北京高一數(shù)學單調(diào)性練題目
1.函數(shù)f(x)=9-ax2(a>;0)在[0,3]上的較大值為( )
A.9 B.9(1-a)
C.9-a D.9-a2
解析:選A.x∈[0,3]時f(x)為減函數(shù),f(x)max=f(0)=9.
2.函數(shù)y=x+1-x-1的值域為( )
A.(-∞,2 ] B.(0,2 ]
C.[2,+∞) D.[0,+∞)
解析:選B.y=x+1-x-1,∴x+1≥0x-1≥0,
∴x≥1.
∵y=2x+1+x-1為[1,+∞)上的減函數(shù),
∴f(x)max=f(1)=2且y>;0.
3.函數(shù)f(x)=x2-2ax+a+2在[0,a]上取得較大值3,較小值2,則實數(shù)a為( )
A.0或1 B.1
C.2 D.以上都不對
解析:選B.因為函數(shù)f(x)=x2-2ax+a+2=(x-a)2-a2+a+2, 對稱軸為x=a,開口方向向上,所以f(x)在[0,a]上單調(diào)遞減,其較大值、較小值分別在兩個端點處取得,即f(x)max=f(0)=a+2=3,
f(x)min=f(a)=-a2+a+2=2.故a=1.
4.(2010年高考山東卷)已知x,y∈R+,且滿足x3+y4=1.則xy的較大值為________。
解析:y4=1-x3,∴0<;1-x3<;1,0
而xy=x?4(1-x3)=-43(x-32)2+3.
當x=32,y=2時,xy較大值為3.
答案:3
1.函數(shù)f(x)=x2在[0,1]上的較小值是( )
A.1 B.0
C.14 D.不存在
解析:選B.由函數(shù)f(x)=x2在[0,1]上的圖象(圖略)知,
f(x)=x2在[0,1]上單調(diào)遞增,故較小值為f(0)=0.
2.函數(shù)f(x)=2x+6,x∈[1,2]x+7,x∈[-1,1],則f(x)的較大值、較小值分別為( )
A.10,6 B.10,8
C.8,6 D.以上都不對
解析:選A.f(x)在x∈[-1,2]上為增函數(shù),f(x)max=f(2)=10,f(x)min=f(-1)=6.
3.函數(shù)y=-x2+2x在[1,2]上的較大值為( )
A.1 B.2
C.-1 D.不存在
解析:選A.因為函數(shù)y=-x2+2x=-(x-1)2+1.對稱軸為x=1,開口向下,故在[1,2]上為單調(diào)遞減函數(shù),所以ymax=-1+2=1.
4.函數(shù)y=1x-1在[2,3]上的較小值為( )
A.2 B.12
C.13 D.-12
解析:選B.函數(shù)y=1x-1在[2,3]上為減函數(shù),
∴ymin=13-1=12.
5.某公司在甲乙兩地同時一種品牌車,利潤(單位:萬元)分別為L1=-x2+21x和L2=2x,其中量(單位:輛)。若該公司在兩地共15輛,則能獲得的較大利潤為( )
A.90萬元 B.60萬元
C.120萬元 D.120.25萬元
解析:選C.設(shè)公司在甲地x輛(0≤x≤15,x為正整數(shù)),則在乙地(15-x)輛,∴公司獲得利潤L=-x2+21x+2(15-x)=-x2+19x+30.∴當x=9或10時,L較大為120萬元,故選C.
6.已知函數(shù)f(x)=-x2+4x+a,x∈[0,1],若f(x)有較小值-2,則f(x)的較大值為( )
A.-1 B.0
C.1 D.2
解析:選C.f(x)=-(x2-4x+4)+a+4=-(x-2)2+4+a.
∴函數(shù)f(x)圖象的對稱軸為x=2,
∴f(x)在[0,1]上單調(diào)遞增。
又∵f(x)min=-2,
∴f(0)=-2,即a=-2.
f(x)max=f(1)=-1+4-2=1.
7.函數(shù)y=2x2+2,x∈N*的較小值是________。
解析:∵x∈N*,∴x2≥1,
∴y=2x2+2≥4,
即y=2x2+2在x∈N*上的較小值為4,此時x=1.
答案:4
8.已知函數(shù)f(x)=x2-6x+8,x∈[1,a],并且f(x)的較小值為f(a),則實數(shù)a的取值范圍是________。
解析:由題意知f(x)在[1,a]上是單調(diào)遞減的,
又∵f(x)的單調(diào)減區(qū)間為(-∞,3],
∴1
答案:(1,3]
9.函數(shù)f(x)=xx+2在區(qū)間[2,4]上的較大值為________;較小值為________。
解析:∵f(x)=xx+2=x+2-2x+2=1-2x+2,
∴函數(shù)f(x)在[2,4]上是增函數(shù),
∴f(x)min=f(2)=22+2=12,
f(x)max=f(4)=44+2=23.
答案:23 12
10.已知函數(shù)f(x)=x2 ?-12≤x≤1?1x ?1
求f(x)的較大、較小值。
解:當-12≤x≤1時,由f(x)=x2,得f(x)較大值為f(1)=1,較小值為f(0)=0;
當1
即12≤f(x)<;1.
綜上f(x)max=1,f(x)min=0.
11.某租賃公司擁有汽車100輛,當每輛車的月租金為3000元時,可全部租出。當每輛車的月租金每增加50元時,未租出的車將會增加一輛。租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元。
(1)當每輛車的月租金為3600元時,能租出多少輛車?
(2)當每輛車的月租金為多少元時,租賃公司的月收益較大?較大月收益是多少?
解:(1)當每輛車的月租金為3600元時,未租出的車輛數(shù)為3600-300050=12.所以這時租出了88輛車。
(2)設(shè)每輛車的月租金為x元。則租賃公司的月收益為f(x)=(100-x-300050)(x-150)-x-300050×50,
整理得
f(x)=-x250+162x-21000=-150(x-4050)2+307050.
所以,當x=4050時,f(x)較大,較大值為f(4050)=307050.即當每輛車的月租金為4050元時,租賃公司的月收益較大。較大月收益為307050元。
12.求f(x)=x2-2ax-1在區(qū)間[0,2]上的較大值和較小值。
解:f(x)=(x-a)2-1-a2,對稱軸為x=a.
①當a<;0時,由圖①可知,
f(x)min=f(0)=-1,
f(x)max=f(2)=3-4a.
、诋0≤a<;1時,由圖②可知,
f(x)min=f(a)=-1-a2,
f(x)max=f(2)=3-4a.
、郛1≤a≤2時,由圖③可知,
f(x)min=f(a)=-1-a2,
f(x)max=f(0)=-1.
、墚攁>;2時,由圖④可知,
f(x)min=f(2)=3-4a,
f(x)max=f(0)=-1.
綜上所述,當a<;0時,f(x)min=-1,f(x)max=3-4a;
當0≤a<;1時,f(x)min=-1-a2,f(x)max=3-4a;
當1≤a≤2時,f(x)min=-1-a2,f(x)max=-1;
當a>;2時,f(x)min=3-4a,f(x)max=-1.
以上就是如何做好北京高一數(shù)學單調(diào)性練題目的全部內(nèi)容了,希望可以幫助同學們。如果你想要了解更多高考信息,請撥打熱線電話:4000-121-121。