資訊

上海

課程咨詢: 10108899

在線咨詢

點擊開始 在線咨詢

電話咨詢

請撥打咨詢電話 1010-8899
TOP
當前位置:上海學而思1對1 > 試題頻道 > 高中試題 > 高一數(shù)學試題 > 正文

上海高一數(shù)學期末考試復習資料知識點

2018-01-03 10:23:36  來源:網(wǎng)絡(luò)整理

點擊即可領(lǐng)取最新500+份上海高中試題/知識點資料包

點擊領(lǐng)取

— — 學而思高中課程在線預(yù)約 — —

預(yù)約課程還可獲贈免費的學習復習診斷

免費學習診斷 精品5人班 個性化團課

    點擊預(yù)約→免費的1對1學科診斷及課程規(guī)劃

  上海高一數(shù)學期末診斷復習資料知識點!期末診斷馬上就要開始了,大家正在緊張的復習,同學們復習時要抓住各科的知識點。下面是小編特意為大家整理的上海高一數(shù)學期末診斷復習資料知識點,供大家參考使用。

 

上海高一期末診斷各科復習資料與知識點匯總


  先進章 集合與函數(shù)概念

  一、集合有關(guān)概念

  1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。 2、集合的中元素的三個特性:

  1.元素的確定性; 2.元素的互異性; 3.元素的無序性

  說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。 (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。 (3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。(4)集合元素的三個特性使集合本身具有了確定性和整體性。

  3、集合的表示:{ … } 如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋} 1. 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5} 2.集合的表示方法:列舉法與描述法。 注意啊:常用數(shù)集及其記法: 非負整數(shù)集(即自然數(shù)集)記作:N 正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實數(shù)集R 關(guān)于“屬于”的概念 集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A 記作 a∈A ,相反,a不屬于集合A 記作 aÏA 列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。 ①語言描述法:例:{不是直角三角形的三角形} ②數(shù)學式子描述法:例:不等式x-3>2的解集是{xÎR| x-3>2}或{x| x-3>2}

  4、集合的分類:

  1.有限集 含有有限個元素的集合 2.無限集 含有無限個元素的集合 3.空集 不含任何元素的集合 例:{x|x2=-5} 二、集合間的基本關(guān)系 1.“包含”關(guān)系—子集 注意:

  有兩種可能(1)A是B的一部分,;(2)A與B是同一集合反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A 2.“相等”關(guān)系(5≥5,且5≤5,則5=5) 實例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同” 結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

 、 任何一個集合是它本身的子集。AÍA ②真子集:如果AÍB,且A¹ B那就說集合A是集合B的真子集,記作A B(或B A) ③如果 AÍB, BÍC ,那么 AÍC ④ 如果AÍB 同時 BÍA 那么A=B

  3. 不含任何元素的集合叫做空集,記為Φ 規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 三、集合的運算 1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集. 記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.

  2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.

  3、交集與并集的性質(zhì):A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A.

  4、全集與補集 (1)補集:設(shè)S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)記作: CSA 即 CSA ={x | xÎS且 xÏA} S CsA A (2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。 (3)性質(zhì):⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U 二、函數(shù)的有關(guān)概念

  1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域.

  注意:2如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個式子有意義的實數(shù)的集合;3 函數(shù)的定義域、值域要寫成集合或區(qū)間的形式. 定義域補充 能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域,求函數(shù)的定義域時列不等式組的主要依據(jù)是:(1)分式的分母不等于零; (2)偶次方根的被開方數(shù)不小于零; (3)對數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對數(shù)式的底必須大于零且不等于1. (5)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數(shù)為零底不可以等于零 (6)實際問題中的函數(shù)的定義域還要助力實際問題有意義. (又注意:求出不等式組的解集即為函數(shù)的定義域。)

  構(gòu)成函數(shù)的三要素:定義域、對應(yīng)關(guān)系和值域 再注意:(1)構(gòu)成函數(shù)三個要素是定義域、對應(yīng)關(guān)系和值域.由于值域是由定義域和對應(yīng)關(guān)系決定的,所以,如果兩個函數(shù)的定義域和對應(yīng)關(guān)系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù))(2)兩個函數(shù)相等當且僅當它們的定義域和對應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。

  相同函數(shù)的判斷方法:①表達式相同;②定義域一致 (兩點必須同時具備) (C)復合函數(shù)的單調(diào)性 復合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),

  其規(guī)律如下: 函數(shù) 單調(diào)性 u=g(x) 增 增 減 減 y=f(u) 增 減 增 減 y=f[g(x)] 增 減 減 增 注意:

  1、函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.

  2、還記得我們在選修里學習簡單易行的導數(shù)法判定單調(diào)性嗎?

  高一數(shù)學下學期期末診斷復習資料與知識點:

  8.函數(shù)的奇偶性

  (1)偶函數(shù) 一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).

  (2)奇函數(shù) 一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).注意:1 函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);函數(shù)可能沒有奇偶性,也可能既是奇函數(shù)又是偶函數(shù)。 2 由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內(nèi)的任意一個x,則-x也一定是定義域內(nèi)的一個自變量(即定義域關(guān)于原點對稱)。

  (3)具有奇偶性的函數(shù)的圖象的特征 偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱. 總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:1 首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點對稱;

  2、確定f(-x)與f(x)的關(guān)系;

  3、作出相應(yīng)結(jié)論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數(shù);若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數(shù). 注意。汉瘮(shù)定義域關(guān)于原點對稱是函數(shù)具有奇偶性的必要條件.首先看函數(shù)的定義域是否關(guān)于原點對稱,若不對稱則函數(shù)是非奇非偶函數(shù).若對稱,

  (1)再根據(jù)定義判定; (2)有時判定f(-x)=±f(x)比較困難,可考慮根據(jù)是否有f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或借助函數(shù)的圖象判定。

  9、函數(shù)的解析表達式

  (1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個變量之間的函數(shù)關(guān)系時,一是要求出它們之間的對應(yīng)法則,二是要求出函數(shù)的定義域.

  (2).求函數(shù)的解析式的主要方法有:待定系數(shù)法、換元法、消參法等,如果已知函數(shù)解析式的構(gòu)造時,可用待定系數(shù)法;已知復合函數(shù)f[g(x)]的表達式時,可用換元法,這時要注意元的取值范圍;當已知表達式較簡單時,也可用湊配法;若已知抽象函數(shù)表達式,則常用解方程組消參的方法求出f(x)

  10.函數(shù)較大(小)值(定義見課本p36頁) 1 利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的較大(小)值2 利用圖象求函數(shù)的較大(小)值3 利用函數(shù)單調(diào)性的判斷函數(shù)的較大(小)值:如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有較大值f(b);如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有較小值f(b)。

 

  以上就是小編為大家收集整理的上海高一數(shù)學期末診斷復習資料知識點,希望能幫助到大家。同學們想要獲得任何學科的輔導,可撥打免費咨詢電話:4000-121-121,那里有專業(yè)的老師為您解答。

    點擊預(yù)約→高考沖刺課,決勝高考

點擊領(lǐng)取上海歷年高中合格考、等級考學習資料包

預(yù)約課程還可獲贈免費的學習復習診斷

點擊領(lǐng)取
加入QQ群,與更多家長交流經(jīng)驗!!
  • 上海小學交流群:639215153
  • 上海小學家長學習交流
  • 上海初中交流群:611612914
  • 上海中學家長學習交流
  • 上海高中交流群:959031473
  • 高考家長學習交流群
  • 上海幼升小交流群:772707735
  • 上海幼兒園升小學家長學習交流群

    相關(guān)課程推薦

    小學1對1全科課

    定制元/次

    咨詢電話:400-810-2680

    點我預(yù)約

    初中1對1全科課

    定制元/次

    咨詢電話:400-810-2680

    點我預(yù)約

    高中1對1全科課

    定制元/次

    咨詢電話:400-810-2680

    點我預(yù)約
    意見反饋電話:400-810-2680  郵箱:advice@xueersi.com
    相關(guān)新聞

    學習資料免費領(lǐng)更多 >

    高中各科文章
    小學各科知識
    高考資訊推薦