資訊

上海

課程咨詢: 400-810-2680

預約高中1對1精品課程(面授/在線),滿足學員個性化學習需求 馬上報名↓

獲取驗證碼

請選擇城市

  • 上海

請選擇意向校區(qū)

請選擇年級

請選擇科目

立即體驗
當前位置:北京學而思1對1 > 初中教育 > 初中數(shù)學 > 正文
內(nèi)容頁banner-1對1體驗

2018年北京初三期末復習函數(shù)學習三個重要點

2018-12-23 15:44:18  來源:網(wǎng)站整理

2018年北京初三期末復習函數(shù)學習三個重要點!數(shù)學難學嗎?如果我們?nèi)柡⒆觽冞@個問題,90%以上的人都會說:難!甚至有些同學還會去說,看到數(shù)學根本就不知道怎么學,自己也做了很多的題,也看了好多輔導資料,為什么成績就一直上不去呢?下面小編為大家?guī)?span style="color:#f00;">2018年北京初三期末復習函數(shù)學習三個重要點。

 

 

一、理解二次函數(shù)的內(nèi)涵及本質(zhì).   

 

二次函數(shù)y=ax2 +bx+c(a≠0,a、b、c是常數(shù))中含有兩個變量x、y,我們只要先確定其中一個變量,就可利用解析式求出另一個變量,即得到一組解;而一組解就是一個點的坐標,實際上二次函數(shù)的圖象就是由無數(shù)個這樣的點構成的圖形.   

 

二、熟悉幾個特殊型二次函數(shù)的圖象及性質(zhì).   

 

1、通過描點,觀察y=ax2、y=ax2+k、y=a(x+h)2圖象的形狀及位置,熟悉各自圖象的基本特征,反之根據(jù)拋物線的特征能迅速確定它是哪一種解析式.   

 

2、理解圖象的平移口訣“加上減下,加左減右”.   

 

y=ax2→y=a(x+h)2+k “加上減下”是針對k而言的,“加左減右”是針對h而言的.   

 

總之,如果兩個二次函數(shù)的二次項系數(shù)相同,則它們的拋物線形狀相同,由于頂點坐標不同,所以位置不同,而拋物線的平移實質(zhì)上是頂點的平移,如果拋物線是一般形式,應先化為頂點式再平移.   

 

3、通過描點畫圖、圖象平移,理解并明確解析式的特征與圖象的特征是完全相對應的,我們在解題時要做到胸中有圖,看到函數(shù)就能在頭腦中反映出它的圖象的基本特征;   

 

4、在熟悉函數(shù)圖象的基礎上,通過觀察、分析拋物線的特征,來理解二次函數(shù)的增減性、極值等性質(zhì);利用圖象來判別二次函數(shù)的系數(shù)a、b、c、△以及由系數(shù)組成的代數(shù)式的符號等問題.   

 

三、要充分利用拋物線“頂點”的作用.   

 

1、要能準確靈活地求出“頂點”.形如y=a(x+h)2+K→頂點(-h(huán),k),對于其它形式的二次函數(shù),我們可化為頂點式而求出頂點.   

 

2、理解頂點、對稱軸、函數(shù)較值三者的關系.若頂點為(-h(huán),k),則對稱軸為x=-h(huán),y較大(。=k;反之,若對稱軸為x=m,y較值=n,則頂點為(m,n);理解它們之間的關系,在分析、解決問題時,可達到舉一反三的效果.   

 

3、利用頂點畫草圖.在大多數(shù)情況下,我們只需要畫出草圖能幫助我們分析、解決問題就行了,這時可根據(jù)拋物線頂點,結合開口方向,畫出拋物線的大致圖象.   

 

四、理解掌握拋物線與坐標軸交點的求法.   

 

一般地,點的坐標由橫坐標和縱坐標組成,我們在求拋物線與坐標軸的交點時,可優(yōu)先確定其中一個坐標,再利用解析式求出另一個坐標.如果方程無實數(shù)根,則說明拋物線與x軸無交點.   

 

從以上求交點的過程可以看出,求交點的實質(zhì)就是解方程,而且與方程的根的判別式聯(lián)系起來,利用根的判別式判定拋物線與x軸的交點個數(shù).答案補充 學理科東西學會求本質(zhì) 做類推   

 

二次函數(shù)都是拋物線函數(shù)(它的函數(shù)軌跡就像平推出去一個球的運動軌跡,當然這個不重要) 因此 把握它的函數(shù)圖像就能把握二次函數(shù)   

 

在函數(shù)圖像中 注意幾點(標準式y(tǒng)=ax^2+bx+c,且a不等于0):   

 

1、開口方向與二次項系數(shù)a有關 正 則開口向上 反之反是。   

 

2、必有一個極值點,也是較值點。如果開口向上,很容易想象這個極值點應該是較小點 反之反是。且極值點的橫坐標為-b/2a。極值點很容易出應用題。   

 

3、不一定和x軸有交點。當根的判定式Δ=b^2-4ac<0時,沒有交點,也就是ax^2+bx+c=0這個方程式“沒有實數(shù)解”(不能說沒有解!具體你上高中就知道了)如果   

 

Δ=0 那么正好有一個交點,也就是我們說的x軸與函數(shù)圖像向切。對應的方程有先進實數(shù)解。Δ>0時,有兩個交點,對應方程有2個實數(shù)解。

 

小編推薦:

  2018年北京初三語文期末相關試題

  2018年北京初三數(shù)學期末相關試題

  2018年北京初三英語期末相關試題

 

這一期的2018年北京初三期末復習函數(shù)學習三個重要點小編就介紹到這里,希望對有需要的同學提供幫助,在此小編祝大家都能取得自己想要的成績,度過一個快樂的寒假,更多試題輔導,請撥打免費咨詢電話:!

文章下長方圖-初中12本名著精華版資料包
立即領取中小學熱門學習資料
*我們在24小時內(nèi)與您取得電話聯(lián)系
側(cè)邊圖-1對5課程