預約高中1對1精品課程(面授/在線),滿足學員個性化學習需求 馬上報名↓
點擊領(lǐng)取→200套近年北京初二期末診斷真題及答案解析(持續(xù)更新中,建議收藏)
北京西城區(qū)初二期末數(shù)學試題!數(shù)學題目是無限的,但數(shù)學的思想和方法卻是有限的。我們只要學好了有關(guān)的基礎(chǔ)知識,掌握了必要的數(shù)學思想和方法,就能順利地對付那無限的題目。下面,小編為大家?guī)?span style="color:#f00;">北京西城區(qū)初二期末數(shù)學試題,希望可以給大家?guī)韼椭秪
以上為部分資料截圖,請點擊下方鏈接獲取完整版
點擊了解>>>學而思愛智康中考沖刺精品課程&咨詢課程請撥打:
中考數(shù)學準備:二次函數(shù)
1.定義
一般地,形如y=ax2+bx+c(a,b,c是常數(shù),a≠0)的函數(shù),叫做二次函數(shù).其中x是自變量,a,b,c分別是函數(shù)解析式的二次項系數(shù)、一次項系數(shù)和常數(shù)項.
2.圖象和性質(zhì)
二次函數(shù)的圖象都是開口向上或者向下的拋物線,都有一條垂直于x軸的對稱軸,都有一個或者較高或者較低的頂點.一般地,二次函數(shù)y=ax2+bx+c的圖象叫做拋物線y=ax2+bx+c.
(1)y=ax2(a是常數(shù),a≠0)的性質(zhì)
①開口方向:
a>0時,開口向上;a<0時,開口向下.
、陧旤c坐標:(0,0)
a>0時,(0,0)為較低點;
a<0時,(0,0)為較高點.
、蹖ΨQ軸:y軸(直線x=0).
、茉鰷p性:
當a>0,且x>0或a<0,且x<0時,
y隨x的增大而增大(同增);
當a>0,且x<0或a<0,且x>0時,
y隨x的增大而減小(異減).
、葺^值:
當a>0,且x=0時,y有較小值0;
當a<0,且x=0時,y有較大值0.
(2)y=ax2+c(a,c是常數(shù),a≠0)的性質(zhì)
、匍_口方向:
a>0時,開口向上;a<0時,開口向下.
②頂點坐標:(0,c)
a>0時,(0,c)為較低點;
a<0時,(0,c)為較高點.
、蹖ΨQ軸:y軸(直線x=0).
④增減性:
當a>0,且x>0或a<0,且x<0時,
y隨x的增大而增大(同增);
當a>0,且x<0或a<0,且x>0時,
y隨x的增大而減小(異減).
、葺^值:
當a>0,且x=0時,y有較小值c;
當a<0,且x=0時,y有較大值c.
(3)y=a(x-h)2(a,h是常數(shù),a≠0)的性質(zhì)
、匍_口方向:
a>0時,開口向上;a<0時,開口向下.
、陧旤c坐標:(h,0)
a>0時,(h,0)為較低點;
a<0時,(h,0)為較高點.
③對稱軸:直線x=h.
④增減性:
當a>0,且x>h或a<0,且x
y隨x的增大而增大(同增);
當a>0,且x
y隨x的增大而減小(異減).
、葺^值:
當a>0,且x=h時,y有較小值0;
當a<0,且x=h時,y有較大值0.
(4)y=a(x-h)2+k(a,h,k是常數(shù),a≠0)
的性質(zhì)
、匍_口方向:
a>0時,開口向上;a<0時,開口向下.
、陧旤c坐標:(h,k)
a>0時,(h,k)為較低點;
a<0時,(h,k)為較高點.
、蹖ΨQ軸:直線x=h.
、茉鰷p性:
當a>0,且x>h或a<0,且x
y隨x的增大而增大(同增);
當a>0,且x
y隨x的增大而減小(異減).
⑤較值:
當a>0,且x=h時,y有較小值k;
當a<0,且x=h時,y有較大值k.
(5)y=ax2+bx+c(a,b,c是常數(shù),a≠0)
的性質(zhì)
①開口方向:
a>0時,開口向上;a<0時,開口向下.
②頂點坐標:
a>0時,為較低點;
a<0時,為較高點.
、蹖ΨQ軸:.
④增減性:
當a>0,且x>或a<0,且x<時,
y隨x的增大而增大(同增);
當a>0,且x<或a<0,且x>時,
y隨x的增大而減小(異減).
、葺^值:
當a>0,且x=時,y有較小值;
當a<0,且x=時,y有較大值.
3.三種表達式
(1)一般式:
y=ax2+bx+c(a,b,c是常數(shù),a≠0);
(2)頂點式:
y=a(x-h)2+k(a,h,k是常數(shù),a≠0);
(3)交點式:
y=a(x-x?)(x-x?)(a,x?,x?是常數(shù),a≠0,
x?,x?分別是拋物線與x軸交點的橫坐標).
4.a,b,c的作用
(1)a決定拋物線的開口方向和大。
①a>0時,開口向上;a<0時,開口向下.
、趞a|越大,開口越小;|a|越小,開口越大.
(2)a、b決定拋物線對稱軸的位置:
、賏b>0(a,b同號)時,
對稱軸在y軸左側(cè)(左同)
、赼b<0(a,b異號)時,
對稱軸在y軸右側(cè)(右異)
、踑b=0(b=0)時,對稱軸為y軸(0中間)
(3)c決定拋物線與y軸交點(0,c)的位置:
、賑>0,拋物線與y軸正半軸相交
、赾<0,拋物線與y軸負半軸相交
③c=0,拋物線與y軸相交于原點
(4)b2-4ac決定拋物線與x軸交點的個數(shù):
①b2-4ac>0,拋物線與x軸有兩個交點
、赽2-4ac<0,拋物線與x軸無交點
、踒2-4ac=0,拋物線與x軸有先進一個
交點(即拋物線的頂點)
題目并不是做得越多越好,題海無邊,總也做不完。關(guān)鍵是你有沒有培養(yǎng)起良好的數(shù)學思維習慣,有沒有掌握正確的數(shù)學解題方法。想了解相關(guān)課程的同學,請撥打?qū)W而思愛智康免費咨詢電話:!
北京西城區(qū)初二期末數(shù)學試題就給大家分享到這里,另外學而思學科老師還給大家整理了一份《初二期末試題資料合集》。
點擊領(lǐng)。骸200套近年北京初二期末診斷真題及答案解析(持續(xù)更新中,建議收藏)》
查缺補漏,助你備戰(zhàn)期末!
部分資料截圖如下:
點擊鏈接領(lǐng)取完整版資料:https://jinshuju.net/f/Vx2WW5
同時也向您的孩子推薦學而思愛智康中考沖刺精品課程,點擊鏈接:http://m.yushangyun.cn/z2019/zkzfx/index.html 或者下方圖片即可預約
相關(guān)推薦:
大家都在看