預約高中1對1精品課程(面授/在線),滿足學員個性化學習需求 馬上報名↓
高中二次函數(shù)知識點總結!聽課十分重要,跟住老師的思維,理解老師的點撥,抓住老師上課時所講授的重點骨干部分的知識,會讓我們的學習少走彎路,事半功倍,下面,小編為大家?guī)?span style="color:#f00;">高中二次函數(shù)知識點總結。祝同學們在高考中取得自己滿意的成績!
以上是部分資料,點擊下方鏈接領取完整版
點擊領取_高中函數(shù)知識點及解題技巧 預約咨詢請撥打:400-810-2680
二次函數(shù)
I.定義與定義表達式 一般地,自變量x和因變量y之間存在如下關系:
y=ax’2+bx+c (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)
則稱y為x的二次函數(shù)。
二次函數(shù)表達式的右邊通常為二次三項式。
II.二次函數(shù)的三種表達式
一般式:y=ax’2+bx+c(a,b,c為常數(shù),a≠0) 頂點式:y=a(x-h)’2+k[拋物線的頂點P(h,k)] 交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]
注:在3種形式的互相轉(zhuǎn)化中,有如下關系: h=-b/2ak=(4ac-b’2)/4ax?,x?=(-b±√b’2-4ac)/2a
III.二次函數(shù)的圖像
在平面直角坐標系中作出二次函數(shù)y=x’2的圖像,
可以看出,二次函數(shù)的圖像是一條拋物線。
IV.拋物線的性質(zhì)
1.拋物線是軸對稱圖形。對稱軸為直線 x=-b/2a。
對稱軸與拋物線唯一的交點為拋物線的頂點P。
特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點P,坐標為 P(-b/2a,(4ac-b’2)/4a) 當-b/2a=0時,P在y軸上;當Δ=b’2-4ac=0時,P在x軸上。
3.二次項系數(shù)a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。
|a|越大,則拋物線的開口越小。
4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;
當a與b異號時(即ab<0),對稱軸在y軸右。
5.常數(shù)項c決定拋物線與y軸交點。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點個數(shù)
Δ=b’2-4ac>0時,拋物線與x軸有2個交點。
Δ=b’2-4ac=0時,拋物線與x軸有1個交點。
Δ=b’2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x=-b±√b’2-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)
V.二次函數(shù)與一元二次方程
特別地,二次函數(shù)(以下稱函數(shù))y=ax’2+bx+c,
當y=0時,二次函數(shù)為關于x的一元二次方程(以下稱方程),即ax’2+bx+c=0 此時,函數(shù)圖像與x軸有無交點即方程有無實數(shù)根。
函數(shù)與x軸交點的橫坐標即為方程的根。
高中二次函數(shù)知識點總結就給大家分享到這里,另外學而思學科老師還給大家整理了一份《點擊領取_高中函數(shù)知識點及解題技巧 》。
點擊領�。�《點擊領取_高中函數(shù)知識點及解題技巧 》
部分資料截圖如下:
點擊鏈接領取完整版資料:https://jinshuju.net/f/NfUbVN
相關推薦:
文章來源于網(wǎng)絡整理,如有侵權,請聯(lián)系刪除,郵箱fanpeipei@100tal.com