掃描注冊(cè)有禮
讓進(jìn)步看得見
熱門課程先知道
預(yù)約高中1對(duì)1精品課程(面授/在線),滿足學(xué)員個(gè)性化學(xué)習(xí)需求 馬上報(bào)名↓
1.和差倍問題
和差問題 和倍問題 差倍問題
已知條件 幾個(gè)數(shù)的和與差 幾個(gè)數(shù)的和與倍數(shù) 幾個(gè)數(shù)的差與倍數(shù)
公式適用范圍 已知兩個(gè)數(shù)的和,差,倍數(shù)關(guān)系
公式 ①(和-差)÷2=較小數(shù)
較小數(shù)+差=較大數(shù)
和-較小數(shù)=較大數(shù)
、(和+差)÷2=較大數(shù)
較大數(shù)-差=較小數(shù)
和-較大數(shù)=較小數(shù)
和÷(倍數(shù)+1)=小數(shù)
小數(shù)×倍數(shù)=大數(shù)
和-小數(shù)=大數(shù)
差÷(倍數(shù)-1)=小數(shù)
小數(shù)×倍數(shù)=大數(shù)
小數(shù)+差=大數(shù)
關(guān)鍵問題 求出同一條件下的
和與差 和與倍數(shù) 差與倍數(shù)
2.年齡問題的三個(gè)基本特征:
、賰蓚(gè)人的年齡差是不變的;
、趦蓚(gè)人的年齡是同時(shí)增加或者同時(shí)減少的;
、蹆蓚(gè)人的年齡的倍數(shù)是發(fā)生變化的;
3.歸一問題的基本特點(diǎn):?jiǎn)栴}中有一個(gè)不變的量,一般是那個(gè)“單一量”,題目一般用“照這樣的速度”……等詞語來表示。
關(guān)鍵問題:根據(jù)題目中的條件確定并求出單一量;
4.植樹問題
基本類型 在直線或者不封閉的曲線上植樹,兩端都植樹 在直線或者不封閉的曲線上植樹,兩端都不植樹 在直線或者不封閉的曲線上植樹,只有一端植樹 封閉曲線上植樹
基本公式 棵數(shù)=段數(shù)+1
棵距×段數(shù)=總長(zhǎng) 棵數(shù)=段數(shù)-1
棵距×段數(shù)=總長(zhǎng) 棵數(shù)=段數(shù)
棵距×段數(shù)=總長(zhǎng)
關(guān)鍵問題 確定所屬類型,從而確定棵數(shù)與段數(shù)的關(guān)系
5.雞兔同籠問題
基本概念:雞兔同籠問題又稱為置換問題、假設(shè)問題,就是把假設(shè)錯(cuò)的那部分置換出來;
基本思路:
①假設(shè),即假設(shè)某種現(xiàn)象存在(甲和乙一樣或者乙和甲一樣):
②假設(shè)后,發(fā)生了和題目條件不同的差,找出這個(gè)差是多少;
③每個(gè)事物造成的差是固定的,從而找出出現(xiàn)這個(gè)差的原因;
、茉俑鶕(jù)這兩個(gè)差作適當(dāng)?shù)恼{(diào)整,消去出現(xiàn)的差。
基本公式:
、侔阉须u假設(shè)成兔子:雞數(shù)=(兔腳數(shù)×總頭數(shù)-總腳數(shù))÷(兔腳數(shù)-雞腳數(shù))
、诎阉型米蛹僭O(shè)成雞:兔數(shù)=(總腳數(shù)一雞腳數(shù)×總頭數(shù))÷(兔腳數(shù)一雞腳數(shù))
關(guān)鍵問題:找出總量的差與單位量的差。
6.盈虧問題
基本概念:一定量的對(duì)象,按照某種標(biāo)準(zhǔn)分組,產(chǎn)生一種結(jié)果:按照另一種標(biāo)準(zhǔn)分組,又產(chǎn)生一種結(jié)果,由于分組的標(biāo)準(zhǔn)不同,造成結(jié)果的差異,由它們的關(guān)系求對(duì)象分組的組數(shù)或?qū)ο蟮目偭?
基本思路:先將兩種分配方案進(jìn)行比較,分析由于標(biāo)準(zhǔn)的差異造成結(jié)果的變化,根據(jù)這個(gè)關(guān)系求出參加分配的總份數(shù),然后根據(jù)題意求出對(duì)象的總量.
基本題型:
①一次有余數(shù),另一次不足;
基本公式:總份數(shù)=(余數(shù)+不足數(shù))÷兩次每份數(shù)的差
、诋(dāng)兩次都有余數(shù);
基本公式:總份數(shù)=(較大余數(shù)一較小余數(shù))÷兩次每份數(shù)的差
③當(dāng)兩次都不足;
基本公式:總份數(shù)=(較大不足數(shù)一較小不足數(shù))÷兩次每份數(shù)的差
基本特點(diǎn):對(duì)象總量和總的組數(shù)是不變的。
關(guān)鍵問題:確定對(duì)象總量和總的組數(shù)。
7.牛吃草問題
基本思路:假設(shè)每頭牛吃草的速度為“1”份,根據(jù)兩次不同的吃法,求出其中的總草量的差;再找出造成這種差異的原因,即可確定草的生長(zhǎng)速度和總草量。
基本特點(diǎn):原草量和新草生長(zhǎng)速度是不變的;
關(guān)鍵問題:確定兩個(gè)不變的量。
基本公式:
生長(zhǎng)量=(較長(zhǎng)時(shí)間×長(zhǎng)時(shí)間牛頭數(shù)-較短時(shí)間×短時(shí)間牛頭數(shù))÷(長(zhǎng)時(shí)間-短時(shí)間);
總草量=較長(zhǎng)時(shí)間×長(zhǎng)時(shí)間牛頭數(shù)-較長(zhǎng)時(shí)間×生長(zhǎng)量;
8.周期循環(huán)與數(shù)表規(guī)律
周期現(xiàn)象:事物在運(yùn)動(dòng)變化的過程中,某些特征有規(guī)律循環(huán)出現(xiàn)。
周期:我們把連續(xù)兩次出現(xiàn)所經(jīng)過的時(shí)間叫周期。
關(guān)鍵問題:確定循環(huán)周期。
閏 年:一年有366天;
、倌攴菽鼙4整除;②如果年份能被100整除,則年份必須能被400整除;
平 年:一年有365天。
、倌攴莶荒鼙4整除;②如果年份能被100整除,但不能被400整除;
9.平均數(shù)
基本公式:①平均數(shù)=總數(shù)量÷總份數(shù)
總數(shù)量=平均數(shù)×總份數(shù)
總份數(shù)=總數(shù)量÷平均數(shù)
、谄骄鶖(shù)=基準(zhǔn)數(shù)+每一個(gè)數(shù)與基準(zhǔn)數(shù)差的和÷總份數(shù)
基本算法:
、偾蟪隹倲(shù)量以及總份數(shù),利用基本公式①進(jìn)行.
、诨鶞(zhǔn)數(shù)法:根據(jù)給出的數(shù)之間的關(guān)系,確定一個(gè)基準(zhǔn)數(shù);一般選與所有數(shù)比較接近的數(shù)或者中間數(shù)為基準(zhǔn)數(shù);以基準(zhǔn)數(shù)為標(biāo)準(zhǔn),求所有給出數(shù)與基準(zhǔn)數(shù)的差;再求出所有差的和;再求出這些差的平均數(shù);較后求這個(gè)差的平均數(shù)和基準(zhǔn)數(shù)的和,就是所求的平均數(shù),具體關(guān)系見基本公式②。
10.抽屜原理
抽屜原則一:如果把(n+1)個(gè)物體放在n個(gè)抽屜里,那么必有一個(gè)抽屜中至少放有2個(gè)物體。
例:把4個(gè)物體放在3個(gè)抽屜里,也就是把4分解成三個(gè)整數(shù)的和,那么就有以下四種情況:
①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1
觀察上面四種放物體的方式,我們會(huì)發(fā)現(xiàn)一個(gè)共同特點(diǎn):總有那么一個(gè)抽屜里有2個(gè)或多于2個(gè)物體,也就是說必有一個(gè)抽屜中至少放有2個(gè)物體。
抽屜原則二:如果把n個(gè)物體放在m個(gè)抽屜里,其中n>m,那么必有一個(gè)抽屜至少有:
、賙=[n/m ]+1個(gè)物體:當(dāng)n不能被m整除時(shí)。
、趉=n/m個(gè)物體:當(dāng)n能被m整除時(shí)。
理解知識(shí)點(diǎn):[X]表示不超過X的較大整數(shù)。
例[4.351]=4;[0.321]=0;[2.9999]=2;
關(guān)鍵問題:構(gòu)造物體和抽屜。也就是找到代表物體和抽屜的量,而后依據(jù)抽屜原則進(jìn)行運(yùn)算。
11.定義新運(yùn)算
基本概念:定義一種新的運(yùn)算符號(hào),這個(gè)新的運(yùn)算符號(hào)包含有多種基本(混合)運(yùn)算。
基本思路:嚴(yán)格按照新定義的運(yùn)算規(guī)則,把已知的數(shù)代入,轉(zhuǎn)化為加減乘除的運(yùn)算,然后按照基本運(yùn)算過程、規(guī)律進(jìn)行運(yùn)算。
關(guān)鍵問題:正確理解定義的運(yùn)算符號(hào)的意義。
注意事項(xiàng):①新的運(yùn)算不一定符合運(yùn)算規(guī)律,特別注意運(yùn)算順序。
、诿總(gè)新定義的運(yùn)算符號(hào)只能在本題中使用。
12.數(shù)列求和
等差數(shù)列:在一列數(shù)中,任意相鄰兩個(gè)數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列。
基本概念:首項(xiàng):等差數(shù)列的先進(jìn)個(gè)數(shù),一般用a1表示;
項(xiàng)數(shù):等差數(shù)列的所有數(shù)的個(gè)數(shù),一般用n表示;
公差:數(shù)列中任意相鄰兩個(gè)數(shù)的差,一般用d表示;
通項(xiàng):表示數(shù)列中每一個(gè)數(shù)的公式,一般用an表示;
數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用Sn表示.
基本思路:等差數(shù)列中涉及五個(gè)量:a1 ,an, d, n,sn,,通項(xiàng)公式中涉及四個(gè)量,如果己知其中三個(gè),就可求出第四個(gè);求和公式中涉及四個(gè)量,如果己知其中三個(gè),就可以求這第四個(gè)。
基本公式:通項(xiàng)公式:an = a1+(n-1)d;
通項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)一1) ×公差;
數(shù)列和公式:sn,= (a1+ an)×n÷2;
數(shù)列和=(首項(xiàng)+末項(xiàng))×項(xiàng)數(shù)÷2;
項(xiàng)數(shù)公式:n= (an+ a1)÷d+1;
項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))÷公差+1;
公差公式:d =(an-a1))÷(n-1);
公差=(末項(xiàng)-首項(xiàng))÷(項(xiàng)數(shù)-1);
關(guān)鍵問題:確定已知量和未知量,確定使用的公式;
13.二進(jìn)制及其應(yīng)用
十進(jìn)制:用0~9十個(gè)數(shù)字表示,逢10進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義,十位上的2表示20,百位上的2表示200。所以234=200+30+4=2×102+3×10+4。
=An×10n-1+An-1×10n-2+An-2×10n-3+An-3×10n-4+An-4×10n-5+An-6×10n-7+……+A3×102+A2×101+A1×100
注意:N0=1;N1=N(其中N是任意自然數(shù))
二進(jìn)制:用0~1兩個(gè)數(shù)字表示,逢2進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義。
(2)= An×2n-1+An-1×2n-2+An-2×2n-3+An-3×2n-4+An-4×2n-5+An-6×2n-7
+……+A3×22+A2×21+A1×20
注意:An不是0就是1。
十進(jìn)制化成二進(jìn)制:
、俑鶕(jù)二進(jìn)制滿2進(jìn)1的特點(diǎn),用2連續(xù)去除這個(gè)數(shù),直到商為0,然后把每次所得的余數(shù)按自下而上依次寫出即可。
②先找出不大于該數(shù)的2的n次方,再求它們的差,再找不大于這個(gè)差的2的n次方,依此方法一直找到差為0,按照二進(jìn)制展開式特點(diǎn)即可寫出。
14.加法乘法原理和幾何計(jì)數(shù)
加法原理:如果完成一件任務(wù)有n類方法,在先進(jìn)類方法中有m1種不同方法,在第二類方法中有m2種不同方法……,在第n類方法中有mn種不同方法,那么完成這件任務(wù)共有:m1+ m2....... +mn種不同的方法。
關(guān)鍵問題:確定工作的分類方法。
基本特征:每一種方法都可完成任務(wù)。
乘法原理:如果完成一件任務(wù)需要分成n個(gè)步驟進(jìn)行,做第1步有m1種方法,不管第1步用哪一種方法,第2步總有m2種方法……不管前面n-1步用哪種方法,第n步總有mn種方法,那么完成這件任務(wù)共有:m1×m2....... ×mn種不同的方法。
關(guān)鍵問題:確定工作的完成步驟。
基本特征:每一步只能完成任務(wù)的一部分。
直線:一點(diǎn)在直線或空間沿一定方向或相反方向運(yùn)動(dòng),形成的軌跡。
直線特點(diǎn):沒有端點(diǎn),沒有長(zhǎng)度。
線段:直線上任意兩點(diǎn)間的距離。這兩點(diǎn)叫端點(diǎn)。
線段特點(diǎn):有兩個(gè)端點(diǎn),有長(zhǎng)度。
射線:把直線的一端無限延長(zhǎng)。
射線特點(diǎn):只有一個(gè)端點(diǎn);沒有長(zhǎng)度。
、贁(shù)線段規(guī)律:總數(shù)=1+2+3+…+(點(diǎn)數(shù)一1);
、跀(shù)角規(guī)律=1+2+3+…+(射線數(shù)一1);
、蹟(shù)長(zhǎng)方形規(guī)律:個(gè)數(shù)=長(zhǎng)的線段數(shù)×寬的線段數(shù):
、軘(shù)長(zhǎng)方形規(guī)律:個(gè)數(shù)=1×1+2×2+3×3+…+行數(shù)×列數(shù)
15.質(zhì)數(shù)與合數(shù)
質(zhì)數(shù):一個(gè)數(shù)除了1和它本身之外,沒有別的約數(shù),這個(gè)數(shù)叫做質(zhì)數(shù),也叫做素?cái)?shù)。
合數(shù):一個(gè)數(shù)除了1和它本身之外,還有別的約數(shù),這個(gè)數(shù)叫做合數(shù)。
質(zhì)因數(shù):如果某個(gè)質(zhì)數(shù)是某個(gè)數(shù)的約數(shù),那么這個(gè)質(zhì)數(shù)叫做這個(gè)數(shù)的質(zhì)因數(shù)。
分解質(zhì)因數(shù):把一個(gè)數(shù)用質(zhì)數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。通常用短除法分解質(zhì)因數(shù)。任何一個(gè)合數(shù)分解質(zhì)因數(shù)的結(jié)果是的。
分解質(zhì)因數(shù)的標(biāo)準(zhǔn)表示形式:N=,其中a1、a2、a3……an都是合數(shù)N的質(zhì)因數(shù),且a1
求約數(shù)個(gè)數(shù)的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)
互質(zhì)數(shù):如果兩個(gè)數(shù)的較大公約數(shù)是1,這兩個(gè)數(shù)叫做互質(zhì)數(shù)。
16.約數(shù)與倍數(shù)
約數(shù)和倍數(shù):若整數(shù)a能夠被b整除,a叫做b的倍數(shù),b就叫做a的約數(shù)。
公約數(shù):幾個(gè)數(shù)公有的約數(shù),叫做這幾個(gè)數(shù)的公約數(shù);其中較大的一個(gè),叫做這幾個(gè)數(shù)的較大公約數(shù)。
較大公約數(shù)的性質(zhì):
1、 幾個(gè)數(shù)都除以它們的較大公約數(shù),所得的幾個(gè)商是互質(zhì)數(shù)。
2、 幾個(gè)數(shù)的較大公約數(shù)都是這幾個(gè)數(shù)的約數(shù)。
3、 幾個(gè)數(shù)的公約數(shù),都是這幾個(gè)數(shù)的較大公約數(shù)的約數(shù)。
4、 幾個(gè)數(shù)都乘以一個(gè)自然數(shù)m,所得的積的較大公約數(shù)等于這幾個(gè)數(shù)的較大公約數(shù)乘以m。
例如:12的約數(shù)有1、2、3、4、6、12;
18的約數(shù)有:1、2、3、6、9、18;
那么12和18的公約數(shù)有:1、2、3、6;
那么12和18較大的公約數(shù)是:6,記作(12,18)=6;
大家都在看