資訊

上海

課程咨詢: 400-810-2680

預(yù)約高中1對(duì)1精品課程(面授/在線),滿足學(xué)員個(gè)性化學(xué)習(xí)需求 馬上報(bào)名↓

獲取驗(yàn)證碼

請(qǐng)選擇城市

  • 上海

請(qǐng)選擇意向校區(qū)

請(qǐng)選擇年級(jí)

請(qǐng)選擇科目

立即體驗(yàn)
當(dāng)前位置:北京學(xué)而思1對(duì)1 > 高中教育 > 高中數(shù)學(xué) > 正文
內(nèi)容頁banner-1對(duì)1體驗(yàn)

北京高一數(shù)學(xué)基本不等式知識(shí)點(diǎn)

2016-05-19 12:14:42  來源:網(wǎng)絡(luò)整理

  上高中以后,同學(xué)們需要接受的知識(shí)點(diǎn)越來越多,很多同學(xué)都不能及時(shí)在課堂上消化所學(xué)的知識(shí)點(diǎn),這樣就需要溫故而知新,下課及時(shí)復(fù)習(xí)。為了方便同學(xué)們學(xué)習(xí),智康網(wǎng)小編就將北京高一數(shù)學(xué)基本不等式知識(shí)點(diǎn)分享給大家,希望給同學(xué)們帶來一定的幫助。

北京高一數(shù)學(xué)基本不等式


  不等式公式


  如果a,b是正數(shù),那么(a+b)/2≥(根號(hào)下ab),當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立,我們稱上述不等式為基本不等式。


  若a,b∈R,則a平方+b平方≥2ab或ab≤(a平方+b平方)/2。


  若a,b∈R,則(a平方+b平方)/2≥[(a+b)/2]的平方


  若a,b∈R※,則a+b>=2(根號(hào)ab)或ab≤[(a+b)/2]的平方


  不等式證明知識(shí)概要


  不等式的證明問題,由于題型多變、方法多樣、技巧性強(qiáng),加上無固定的規(guī)律可循,往往不是用一種方法就能解決的,它是多種方法的靈活運(yùn)用,也是各種思想方法的集中體現(xiàn),因此難度較大。解決這個(gè)問題的途徑在于熟練掌握不等式的性質(zhì)和一些基本不等式,靈活運(yùn)用常用的證明方法。


  北京高一數(shù)學(xué)基本不等式要點(diǎn)精析


  1。比較法比較法是證明不等式的較基本、較重要的方法之一,它是兩個(gè)實(shí)數(shù)大小順序和運(yùn)算性質(zhì)的直接應(yīng)用,比較法可分為差值比較法(簡(jiǎn)稱為求差法)和商值比較法(簡(jiǎn)稱為求商法)。


  (1)差值比較法的理論依據(jù)是不等式的基本性質(zhì):“a-b≥0a≥b;a-b≤0a≤b”。其一般步驟為:①作差:考察不等式左右兩邊構(gòu)成的差式,將其看作一個(gè)整體;②變形:把不等式兩邊的差進(jìn)行變形,或變形為一個(gè)常數(shù),或變形為若干個(gè)因式的積,或變形為一個(gè)或幾個(gè)平方的和等等,其中變形是求差法的關(guān)鍵,配方和因式分解是經(jīng)常使用的變形手段;③判斷:根據(jù)已知條件與上述變形結(jié)果,判斷不等式兩邊差的正負(fù)號(hào),較后肯定所求證不等式成立的結(jié)論。應(yīng)用范圍:當(dāng)被證的不等式兩端是多項(xiàng)式、分式或?qū)?shù)式時(shí)一般使用差值比較法。


  (2)商值比較法的理論依據(jù)是:“若a,b∈R+,a/b≥1a≥b;a/b≤1a≤b”。其一般步驟為:①作商:將左右兩端作商;②變形:化簡(jiǎn)商式到較簡(jiǎn)形式;③判斷商與1的大小關(guān)系,就是判定商大于1或小于1。應(yīng)用范圍:當(dāng)被證的不等式兩端含有冪、指數(shù)式時(shí),一般使用商值比較法。


  2。綜合法利用已知事實(shí)(已知條件、重要不等式或已證明的不等式)作為基礎(chǔ),借助不等式的性質(zhì)和有關(guān)定理,經(jīng)過逐步的邏輯推理,較后推出所要證明的不等式,其特點(diǎn)和思路是“由因?qū)Ч?rdquo;,從“已知”看“需知”,逐步推出“結(jié)論”。其邏輯關(guān)系為:AB1


  B2B3…BnB,即從已知A逐步推演不等式成立的必要條件從而得出結(jié)論B。


  3。分析法分析法是指從需證的不等式出發(fā),分析這個(gè)不等式成立的充分條件,進(jìn)而轉(zhuǎn)化為判定那個(gè)條件是否具備,其特點(diǎn)和思路是“執(zhí)果索因”,即從“未知”看“需知”,逐步靠攏“已知”。用分析法證明AB的邏輯關(guān)系為:BB1B1


  B3…


  BnA,書寫的模式是:為了證明命題B成立,只需證明命題B1為真,從而有…,這只需證明B2為真,從而又有…,……這只需證明A為真,而已知A為真,故B必為真。這種證題模式告訴我們,分析法證題是步步尋求上一步成立的充分條件。


  4。反證法有些不等式的證明,從正面證不好說清楚,可以從正難則反的角度考慮,即要證明不等式A>B,先假設(shè)A≤B,由題設(shè)及其它性質(zhì),推出矛盾,從而肯定A>B。凡涉及到的證明不等式為否定命題、惟一性命題或含有“至多”、“至少”、“不存在”、“不可能”等詞語時(shí),可以考慮用反證法。


  5。換元法換元法是對(duì)一些結(jié)構(gòu)比較復(fù)雜,變量較多,變量之間的關(guān)系不甚明了的不等式可引入一個(gè)或多個(gè)變量進(jìn)行代換,以便簡(jiǎn)化原有的結(jié)構(gòu)或?qū)崿F(xiàn)某種轉(zhuǎn)化與變通,給證明帶來新的啟迪和方法。主要有兩種換元形式。(1)三角代換法:多用于條件不等式的證明,當(dāng)所給條件較復(fù)雜,一個(gè)變量不易用另一個(gè)變量表示,這時(shí)可考慮三角代換,將兩個(gè)變量都有同一個(gè)參數(shù)表示。此法如果運(yùn)用恰當(dāng),可溝通三角與代數(shù)的聯(lián)系,將復(fù)雜的代數(shù)問題轉(zhuǎn)化為三角問題根據(jù)具體問題,實(shí)施的三角代換方法有:①若x2+y2=1,可設(shè)x=cosθ,y=sinθ;②若x2+y2≤1,可設(shè)x=rcosθ,y=rsinθ(0≤r≤1);③對(duì)于含有的不等式,由于|x|≤1,可設(shè)x=cosθ;④若x+y+z=xyz,由tanA+tanB+tanC=tanAtan-BtanC知,可設(shè)x=taaA,y=tanB,z=tanC,其中A+B+C=π。(2)增量換元法:在對(duì)稱式(任意交換兩個(gè)字母,代數(shù)式不變)和給定字母順序(如a>b>c等)的不等式,考慮用增量法進(jìn)行換元,其目的是通過換元達(dá)到減元,使問題化難為易,化繁為簡(jiǎn)。如a+b=1,可以用a=1-t,b=t或a=1/2+t,b=1/2-t進(jìn)行換元。


  6。放縮法放縮法是要證明不等式A


  北京高一數(shù)學(xué)基本不等式難點(diǎn)突破


  1。在用商值比較法證明不等式時(shí),要注意分母的正、負(fù)號(hào),以確定不等號(hào)的方向。


  2。分析法與綜合法是對(duì)立統(tǒng)一的兩個(gè)方面,前者執(zhí)果索因,利于思考,因?yàn)樗较蛎鞔_,思路自然,易于掌握;后者是由因?qū)Ч擞诒硎,因(yàn)樗鼦l理清晰,形式簡(jiǎn)潔,適合人們的思維習(xí)慣。但是,用分析法探求證明不等式,只是一種重要的探求方式,而不是一種好的書寫形式,因?yàn)樗鼣⑹鲚^繁,如果把“只需證明”等字眼不寫,就成了錯(cuò)誤。而用綜合法書寫的形式,它掩蓋了分析、探索的過程。因而證明不等式時(shí),分析法、綜合法常常是不能分離的。如果使用綜合法證明不等式,難以入手時(shí)常用分析法探索證題的途徑,之后用綜合法形式寫出它的證明過程,以適應(yīng)人們習(xí)慣的思維規(guī)律。還有的不等式證明難度較大,需一邊分析,一邊綜合,實(shí)現(xiàn)兩頭往中間靠以達(dá)到證題的目的。這充分表明分析與綜合之間互為前提、互相滲透、互相轉(zhuǎn)化的辯證統(tǒng)一關(guān)系。分析的終點(diǎn)是綜合的起點(diǎn),綜合的終點(diǎn)又成為進(jìn)一步分析的起點(diǎn)。


  3。分析法證明過程中的每一步不一定“步步可逆”,也沒有必要要求“步步可逆”,因?yàn)檫@時(shí)僅需尋找充分條件,而不是充要條件。如果非要“步步可逆”,則限制了分析法解決問題的范圍,使得分析法只能使用于證明等價(jià)命題了。用分析法證明問題時(shí),一定要恰當(dāng)?shù)赜煤?ldquo;要證”、“只需證”、“即證”、“也即證”等詞語。


  4。反證法證明不等式時(shí),必須要將命題結(jié)論的反面的各種情形一一加以導(dǎo)出矛盾。


  5。在三角換元中,由于已知條件的限制作用,可能對(duì)引入的角有一定的限制,應(yīng)引起高度重視,否則可能會(huì)出現(xiàn)錯(cuò)誤的結(jié)果。這是換元法的重點(diǎn),也是難點(diǎn),且要注意整體思想的應(yīng)用。


  6。運(yùn)用放縮法證明不等式時(shí)要把握好“放縮”的尺度,即要恰當(dāng)、適度,否則將達(dá)不到預(yù)期的目的,或得出錯(cuò)誤的結(jié)論。另外,是分組分別放縮還是單個(gè)對(duì)應(yīng)放縮,是部分放縮還是整體放縮,都要根據(jù)不等式的結(jié)構(gòu)特點(diǎn)掌握清楚。


  以上就是北京高一數(shù)學(xué)基本不等式知識(shí)點(diǎn)的全部?jī)?nèi)容了,希望以上的介紹可以給同學(xué)們帶來一定的幫助。如果你想要了解更多高考信息,請(qǐng)撥打熱線電話:4000-121-121。

文章下長(zhǎng)方圖-高三一輪復(fù)習(xí)史地政資料
立即領(lǐng)取中小學(xué)熱門學(xué)習(xí)資料
*我們?cè)?4小時(shí)內(nèi)與您取得電話聯(lián)系
側(cè)邊圖-寒假1對(duì)1