預(yù)約高中1對1精品課程(面授/在線),滿足學(xué)員個性化學(xué)習(xí)需求 馬上報名↓
排列組合題解題思路:
解排列組合問題,首先要弄清一件事是“分類”還是“分步”完成,對于元素之間的關(guān)系,還要考慮“是有序”的還是“無序的”,也就是會正確使用分類計數(shù)原理和分步計數(shù)原理,排列定義和組合定義,其次,對一些復(fù)雜的帶有附加條件的問題,需掌握以下幾種常用的解題方法:
特殊優(yōu)先法對于存在特殊元素或者特殊位置的排列組合問題,我們可以從這些特殊的東西入手,先解決特殊元素或特殊位置,再去解決其它元素或位置,這種解法叫做特殊優(yōu)先法。例如:用0,1,2,3,4這5個數(shù)字,組成沒有重復(fù)數(shù)字的三位數(shù),其中偶數(shù)共有________個。(答案:30個)
科學(xué)分類法對于較復(fù)雜的排列組合問題,由于情況繁多,因此要對各種不同情況,進行科學(xué)分類,以便有條不紊地進行解答,避免重復(fù)或遺漏現(xiàn)象發(fā)生例如:從6臺原裝機和5臺組裝機中任取5臺,其中至少有原裝與組裝機各兩臺,則不同的選取法有_______種。(答案:350)
插空法解決一些不相鄰問題時,可以先排一些元素然后插入其余元素,使問題得以解決例如:7人站成一行,如果甲乙兩人不相鄰,則不同排法種數(shù)是______。(答案:3600)
捆綁法相鄰元素的排列,可以采用“整體到局部”的排法,即將相鄰的元素當(dāng)成“一個”元素進行排列,然后再局部排列例如:6名同學(xué)坐成一排,其中甲,乙必須坐在一起的不同坐法是________種。(答案:240)
排除法從總體中排除不符合條件的方法數(shù),這是一種間接解題的方法。
b,排列組合應(yīng)用題往往和代數(shù),三角,立體幾何,平面解析幾何的某些知識聯(lián)系,從而增加了問題的綜合性,解答這類應(yīng)用題時,要注意使用相關(guān)知識對答案進行取舍。例如:從集合{0,1,2,3,5,7,11}中任取3個元素分別作為直線方程Ax+By+C=0中的A,B,C,所得的經(jīng)過坐標(biāo)原點的直線有_________條。(答案:30)
大家都在看
限時免費領(lǐng)取
學(xué)習(xí)相關(guān)