掃描注冊(cè)有禮
讓進(jìn)步看得見
熱門課程先知道
預(yù)約高中1對(duì)1精品課程(面授/在線),滿足學(xué)員個(gè)性化學(xué)習(xí)需求 馬上報(bào)名↓
點(diǎn)擊領(lǐng)取_高中數(shù)學(xué)導(dǎo)數(shù)練習(xí)及講義
高中數(shù)學(xué)函數(shù)與導(dǎo)數(shù)題!同學(xué)們?cè)趯W(xué)習(xí)導(dǎo)數(shù)的時(shí)候一定要多做練習(xí),這樣才能夠熟練的掌握導(dǎo)數(shù)的知識(shí)點(diǎn),這樣在參加考試的時(shí)候能夠應(yīng)對(duì)所有的問題,以取得好的成績。下面,小編為大家?guī)?/span>高中數(shù)學(xué)函數(shù)與導(dǎo)數(shù)題。
1. 求函數(shù)的單調(diào)性:
利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo), (1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù); (2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù); (3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù)。
利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導(dǎo)數(shù)f(x); ③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間。
反過來, 也可以利用導(dǎo)數(shù)由函數(shù)的單調(diào)性解決相關(guān)問題(如確定參數(shù)的取值范圍): 設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),
(1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);
(2) 如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);
(3) 如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立。 2. 求函數(shù)的極值:
設(shè)函數(shù)yf(x)在x0及其附近有定義,如果對(duì)x0附近的所有的點(diǎn)都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數(shù)f(x)的極小值(或極大值)。
可導(dǎo)函數(shù)的極值,可通過研究函數(shù)的單調(diào)性求得,基本步驟是:
(1)確定函數(shù)f(x)的定義域;(2)求導(dǎo)數(shù)f(x);(3)求方程f(x)0的全部實(shí)根,x1x2xn,順次將定義域分成若干個(gè)小區(qū)間,并列表:x變化時(shí),f(x)和f(x)值的
變化情況:
(4)檢查f(x)的符號(hào)并由表格判斷極值。 3. 求函數(shù)的最大值與最小值:
如果函數(shù)f(x)在定義域I內(nèi)存在x0,使得對(duì)任意的xI,總有f(x)f(x0),則稱f(x0)為函數(shù)在定義域上的最大值。函數(shù)在定義域內(nèi)的極值不一定唯一,但在定義域內(nèi)的最值是唯一的。
求函數(shù)f(x)在區(qū)間[a,b]上的最大值和最小值的步驟: (1)求f(x)在區(qū)間(a,b)上的極值;
(2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的最大值與最小值。
以上是部分資料截圖,點(diǎn)擊下方鏈接領(lǐng)取完整版
怎么求特征向量
求特征向量:
一旦找到特征值λ,相應(yīng)的特征向量可以通過求解特征方程(A – λI) v = 0 得到,其中v為待求特征向量,I為單位陣。
沒有實(shí)特征值的一個(gè)矩陣的例子是順時(shí)針旋轉(zhuǎn)90度。
數(shù)值計(jì)算:
在實(shí)踐中,大型矩陣的特征值無法通過特征多項(xiàng)式計(jì)算,計(jì)算該多項(xiàng)式本身相當(dāng)費(fèi)資源,而精確的“符號(hào)式”的根對(duì)于高次的多項(xiàng)式來說很難計(jì)算和表達(dá):阿貝爾-魯費(fèi)尼定理顯示高次(5次或更高)多項(xiàng)式的根無法用n次方根來簡(jiǎn)單表達(dá)。對(duì)于估算多項(xiàng)式的根的有效算法是有的,但特征值的小誤差可以導(dǎo)致特征向量的巨大誤差。求特征多項(xiàng)式的零點(diǎn),即特征值的一般算法,是迭代法。最簡(jiǎn)單的方法是冪法:取一個(gè)隨機(jī)向量v,然后計(jì)算一系列單位向量。
這個(gè)序列幾乎總是收斂于絕對(duì)值最大的特征值所對(duì)應(yīng)的特征向量。這個(gè)算法很簡(jiǎn)單,但是本身不是很有用。但是,象QR算法這樣的算法正是以此為基礎(chǔ)的。
以上就是小編特意為大家整理的高中數(shù)學(xué)函數(shù)與導(dǎo)數(shù)題的相關(guān)內(nèi)容,同學(xué)們?cè)趯W(xué)習(xí)的過程中如有疑問或者想要獲取更多資料,請(qǐng)撥打?qū)W而思愛智康免費(fèi)咨詢電話:400-810-2680!
點(diǎn)擊領(lǐng)取:《點(diǎn)擊領(lǐng)取_高中數(shù)學(xué)導(dǎo)數(shù)練習(xí)及講義 》
部分資料截圖如下:
點(diǎn)擊鏈接領(lǐng)取完整版資料:https://jinshuju.net/f/fzH4Lv
相關(guān)推薦:
文章來源于網(wǎng)絡(luò)整理,如有侵權(quán),請(qǐng)聯(lián)系刪除,郵箱fanpeipei@100tal.com
大家都在看
限時(shí)免費(fèi)領(lǐng)取
學(xué)習(xí)相關(guān)