預(yù)約高中1對1精品課程(面授/在線),滿足學(xué)員個性化學(xué)習(xí)需求 馬上報名↓
點擊領(lǐng)取_高考200+全科復(fù)習(xí)資料+2020準備視頻+志愿填報資料包
高考數(shù)學(xué)導(dǎo)數(shù)不等式之柯西不等式,北京高考必看!高考數(shù)學(xué)中有關(guān)導(dǎo)數(shù)不等式的考點不少,那么下面小編今天就給大家?guī)砀呖紨?shù)學(xué)導(dǎo)數(shù)不等式之柯西不等式,北京高考必看!一分付出才有可能有一分收獲! 大家不要覺得數(shù)學(xué)太難,就學(xué)不進去,相信找到合適的材料你一定會有所收獲的!
柯西不等式是一個非常重要的不等式,靈活巧妙的應(yīng)用它,可以使一些較為困難的問題迎刃而解。可在證明不等式,解三角形相關(guān)問題,求函數(shù)較值,解方程等問題的方面得到應(yīng)用
柯西不等式的一般證法有以下幾種:
■①Cauchy不等式的形式化寫法就是:記兩列數(shù)分別是ai, bi,則有 (∑ai^2) * (∑bi^2) ≥ (∑ai *bi)^2.
我們令 f(x) = ∑(ai + x * bi)^2 = (∑bi^2) * x^2 + 2 * (∑ai * bi) * x + (∑ai^2)
則我們知道恒有 f(x) ≥ 0.
用二次函數(shù)無實根或只有一個實根的條件,就有 Δ = 4 * (∑ai * bi)^2 - 4 * (∑ai^2) * (∑bi^2) ≤ 0.
于是移項得到結(jié)論。
■②用向量來證.
m=(a1,a2......an) n=(b1,b2......bn)
mn=a1b1+a2b2+......+anbn=(a1^2+a2^2+......+an^2)^(1/2)乘以(b1^2+b2^2+......+bn^2)^(1/2)乘以cosX.
因為cosX小于等于1,所以:a1b1+a2b2+......+anbn小于等于a1^2+a2^2+......+an^2)^(1/2)乘以(b1^2+b2^2+.....+bn^2)^(1/2)
這就證明了不等式.
柯西不等式還有很多種,這里只取兩種較常用的證法.
[編輯本段]【柯西不等式的應(yīng)用】
柯西不等式在求某些函數(shù)較值中和證明某些不等式時是經(jīng)常使用的理論根據(jù),我們在教學(xué)中應(yīng)給予極大的重視。
■巧拆常數(shù):
例:設(shè)a、b、c 為正數(shù)且各不相等。
求證: 2/(a+b)+2/(b+c)+2/(c+a)>9/(a+b+c)
分析:∵a 、b 、c 均為正數(shù)
∴為證結(jié)論正確只需證:2*(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]>9
而2(a+b+c)=(a+b)+(a+c)+(c+b)
又 9=(1+1+1)(1+1+1)
證明:Θ2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]=[(a+b)+(a+c)+(b+c)][1/(a+b)+1/(b+c)+1/(c+a)]≥(1+1+1)(1+1+1)=9
又 a、b 、c 各不相等,故等號不能成立
∴原不等式成立。
排序不等式是高中數(shù)學(xué)大綱、新課標 要求的基本不等式。
設(shè)有兩組數(shù) a 1 , a 2 ,…… a n, b 1 , b 2 ,…… b n 滿足 a 1 ≤ a 2 ≤……≤ a n, b 1 ≤ b 2 ≤……≤ b n 則有 a 1 b n + a 2 b n-1+……+ a n b 1≤ a 1 b t + a 2 b t +……+ a n b t ≤ a 1 b 1 + a 2 b 2 + a n b n 式中t1,t2,……,tn是1,2,……,n的任意一個排列, 當且僅當 a 1 = a 2 =……= a n 或 b 1 = b 2 =……= b n 時成立。
另外學(xué)而思愛智康的老師準備了
2020年北京高考復(fù)習(xí)資料包
助你效率翻倍!取得優(yōu)異成績!
點擊鏈接☞https://jinshuju.net/f/gk98lt或下方圖片即可領(lǐng)!
同時,也向您推薦學(xué)而思愛智康志愿填報服務(wù)
點擊鏈接☞https://jinshuju.net/f/HXIXwC或下方圖片即可預(yù)約!
以上就是小編特意為大家整理的高考數(shù)學(xué)導(dǎo)數(shù)不等式之柯西不等式,北京高考必看的相關(guān)內(nèi)容,同學(xué)們一模診斷結(jié)束了,同學(xué)們的政治成績提高了嗎,同學(xué)們在學(xué)習(xí)的過程中如有疑問或者想要獲取更多資料,歡迎撥打?qū)W而思愛智康免費電話: 更有專業(yè)的老師為大家解答相關(guān)問題!
相關(guān)推薦:
大家都在看
限時免費領(lǐng)取
學(xué)習(xí)相關(guān)